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Abstract

We investigate the geometry and topology of a moduli space of orthogonal vector bundles on
a hyperelliptic Riemann surface, and derive results on intersection pairings by means of twistor
transform and index calculations. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this note, we study certain moduli spacesMg,n of rank 2n orthogonal vector bundles
over hyperelliptic Riemann surfaces6 of genusg, generalising some of the results proved
in [6,7,15]. Some members of this family of moduli spaces are very familiar; for example,
Mg,1 is the Jacobian of6, andMg,2 is the moduli space of rank 2 holomorphic stable
vector bundles over6 with fixed and odd determinant (cf. [12]). Ramanan [12] identified
Mg,n with a complete intersection of two ‘quadric varieties’ in a complex Grassmannian,
which shows the existence of a positive line bundleL overMg,n. Hence, it is natural
to study the Hilbert polynomial dim(H 0(Mg,n,O(Lk))) as a direct generalisation of the
Verlinde formula ofMg,2 (cf. [3,16,17,19]), as well as the intersection theory ofMg,n

(cf. [2,8,17,19]). We derive our results as in [7], by using the embedding ofMg,n in a
homogeneous space.

In Section 2, we give the definition ofMg,n and find aK-theoretic decomposition of its
holomorphic tangent bundle. In Section 3, we prove some vanishings and symmetries of
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holomorphic Euler characteristics for virtual vector bundles and compute theVerlinde-type
formuladim(H 0(Mg,n,O(Lk))) as a determinant of a matrix whose entries are Verlinde
dimensions themselves. From this formula, we determine the symplectic volume ofMg,n.
In Section 4, we generalise results from [6,7], by computing all the intersection numbers of
a subring ofH ∗(Mg,g−1) generated by two quaternionic-related classes. Furthermore, we
prove generalisations of the Newstead conjectures forMg,g−1 (cf. [11, Conjecture (a)–(c)]).

2. Moduli spaces

Let 6g be a hyperelliptic Riemann surface of genusg with involution ι : 6 → 6

and Weierstrass points{ω1, . . . , ω2g+2}. Consider the special Clifford groupSC(2n) =
C

∗ ×Z2 Spin(2n), which fits into the following commutative diagram:

1 → C
∗ → SC(2n) → SO(2n) → 1

↑ ↑ ‖
1 → Z2 → Spin(2n) → SO(2n) → 1

.

LetMg,n denote the moduli space of semistable, holomorphic, rank 2n, vector bundles
E over6g with the following properties:
• E is an (orthogonal) vector bundle with structure groupSO(2n) and with a lift of structure

group toSC(2n).
• E is ι-invariant, i.e. there is a lift ofι to E (denoted by the same symbol) such that
E ∼= ι∗E. Thus, we have the restrictions ofι to the fibres over the Weierstrass points
ι : Eωj → Eωj for all j = 1, . . . ,2g + 2. Sinceι2 = 1, the eigenvalues ofι on these
fibres are±1, and we denote the eigenspace byE±

ωj
.

• E is such that dim((E ⊗3)−ωj ) = 1 for all j = 1, . . . ,2g + 2, where3 is anι-invariant
line bundle over6 of degree 2g − 1.

Example.
1. Casen = 1. SinceSO(2) ∼= U(1),Mg,1 is the JacobianJ (6) of 62 (cf. [12]).
2. Casen = 2. The special Clifford group is

SC(4) = {(A,B) ∈ Gl(2)× Gl(2) | det(A) · det(B) = 1}
and the homomorphismSC(4) → SO(4) is given by (A,B) → A ⊗ B. Thus, a
SC(4)-bundle is essentially a pair ofGl(2)-bundlesM,N with det(M) ⊗ det(N) = 1,
a trivial bundle. Since the Clifford groupC(4) does not distinguish betweenM andN ,
we have thatMg,2 is the moduli space of (stable) vector bundles of rank 2 and fixed odd
determinant (cf. [12]).
Ramanan proved in [12, Theorem 3] thatMg,n is isomorphic to the variety of(g + 1 −

n)-dimensional subspaces ofC2g+2 which are isotropic with respect to the two quadratic
forms:

2g+2∑
i=1

y2
i ,

2g+2∑
i=1

ωiy
2
i . (1)
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Therefore, we have a holomorphic embedding ofMg,n into the complex partial flag mani-
fold

Fg,n = SO(2g + 2)

U(g + 1 − n)× SO(2n)
,

which clearly parametrises the(g + 1 − n)-dimensional subspaces ofC2g+2 which are
isotropic with respect to the first quadratic form. The flag manifoldFg,n is a twistor space
for

Gg,n = SO(2g + 2)

SO(2g + 2 − 2n)× SO(2n)
,

since the fibreSO(2g + 2 − 2n)/U(g + 1 − n) parametrises orthogonal, almost-complex
structures on the real oriented(2g + 2 − 2n)-dimensional subspaces ofR2g+2, which are
compatible with the orientation (cf. [1,14]).

Let Q, W denote the duals of the tautological complex vector bundles overFg,n with
fibresCg+1−n, C2n and structure groupsU(g + 1− n), SO(2n), respectively. The second
quadratic form determines a holomorphic, non-degenerate section of the second symmetric
tensor powerS2Q of Q, whose zero-set is preciselyMg,n. Thus, we know thatMg,n is a
smooth complex manifold of complex dimension(2n− 1)(g + 1 − n).

The splitting of the standard representation ofSO(2g + 2) onC2g+2 underU(g + 1 −
n)× SO(2n) yields

Q∗ ⊕Q⊕W = 2g + 2. (2)

This implies that

so(2g + 2)c ∼= (u(g + 1 − n)⊕ so(2n))c ⊕
(
∧2Q⊕Q⊗W

)
⊕ (∧2Q⊕Q⊗W

)
,

where∧2Q⊕Q⊗W corresponds to the holomorphic tangent bundleT 1,0Fg,n ofFg,n. Here
∧2Q is the holomorphic tangent bundle to the Hermitian fibresSO(2g+2−2n)/U(g+1−n)
of Fg,n → Gg,n and its complementQ⊗W is a holomorphic horizontal bundle (cf. [1]).

On the other hand,

T 1,0Fg,n|Mg,n
= T 1,0Mg,n ⊕ S2Q|Mg,n

,

so that

T = T 1,0Mg,n = ∧2Q⊕Q⊗W − S2Q,

where we are denoting bundles and their pull-backs by the same symbols.

Lemma 2.1.

T = Q⊗W − ψ2Q,

whereψ2 = S2 − ∧2 in K-theory.
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The operatorψ2 is one of the series of Adams operators, defined by the formula∑
p≥0

(ψpE)tp = r − t
d

dt
log3−tE,

whereE ∈ K(M) has virtual rankr and3tE = ∑
i≥0(∧iE)t i [4]. Eachψp is a ring

homomorphism inK-theory, and is characterized by the property that

chk(ψ
pE) = pkchk(E), (3)

where chk(E) denotes the term of dimension 2k in the Chern character. We can readily see
that

c1(T ) = 2(n− 1)c1(L), (4)

sinceL = det(Q) onF . Note thatL is a positive line bundle onFg,n and, therefore, also
onMg,n.

SinceQ∗ +Q = 2g + 2 −W is a genuine complex vector bundle of rank 2(g + 1− n)

with total Chern classc(W)−1, we obtain relations in the cohomology ring for dimension
greater than 2(g + 1 − n).

3. Character calculations

Let h = g + 1 − n and consider the holomorphic Euler characteristics

Vh,n(p, q, r) = χ(Mg,n,O(ψ
p−qQ⊗ Lq−(n−1) ⊗ ψrW)). (5)

Letw = x + x−1 − 2 and

F(w, p) = (xp − x−p)(x − x−1)

x + x−1 − 2
=
∑
h≥0

(
4

(
p + h

2h+ 1

)
+
(
p + h− 1

2h− 1

))
wh. (6)

LetG(w,p) be such thatG(w,p)F (w, p) = 1, i.e.

G(w,p) =
∞∑
m=0

(−1)mGm(p)w
m =

∞∑
m=0

(−1)mPm(p)

(4p)m+1wm
,

where

Pm(p) =


∑2p−1
j=1 (−1)j+1

(
p

sin2(jπ/2p)

)m
, m ≥ 0,

0, m < 0.

Theorem 3.1.

Vh,n(0, q, r) = 0, Vh,n(p,0, r) = 0,

Vh,n(p, q, r) = (−1)hVh,n(−p,−q, r), Vh,n(p, q, r) = −Vh,n(−p, q, r),
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Vh,n(q, q,0) = 2nh

(4q)(h+1)(n−1)−g

∣∣∣∣∣∣∣
Ph(q) Ph+1(q) · · · Ph+n−2(q)
...

...
...

Ph−n+2(q) Ph−n+3(q) · · · Ph(q)

∣∣∣∣∣∣∣ .

Remark.

χ(Mg,n,O(L
q−(n−1))) = dimH 0(Mg,n,O(L

q−(n−1)))

by Kodaira vanishing theorem sinceL is a positive line bundle onMg,n, Eq.(4) and Serre
duality. Thus,

dimH 0(Mg,n,O(L
q−(n−1))) = Vh,n(q, q,0)

2nh

constitutes our Verlinde-type formula.

Remark. Note thatVh,2(q, q,0)/4h = Ph(q) is the original Verlinde formula

Ph(q) = dim(H 0(Mg,2,O(L
q−1))),

Vh,n(q, q,0) is the determinant of a matrix whose entries are Verlinde dimensions them-
selves, and the classic result

Vh,1(q, q,0)

2h
= dim(H 0(TJ(6),O(Lq))) = (4q)g.

Remark. The second line in Theorem3.1 represents the symmetries ofVh,n(p, q, r).

Proof. Let σ ∗ = S2Q andm = rk(S2Q). We shall use the Koszul complex

0→OF
(∧mσ ⊗ V

) → OF
(
∧m−1σ ⊗ V

)
→ · · · → OF (σ ⊗ V )

→OF (V ) → OM(V ) → 0 (7)

and the Atiyah–Bott fixed point theorem, whereV is any virtual bundle overFg,n.
Recall that, on a homogeneous space, holomorphic Euler characteristics can be computed

by means of the Atiyah–Bott fixed point formula. LetG be a reductive Lie group,P a
parabolic subgroup ofG, andF = G/P the corresponding flag manifold. A representation
R of P determines both a holomorphic vector bundleR = G ×P R overF and a virtual
G-module

IR =
∑
i

(−1)iH i(F,O(R)).

Let T be a common maximal torus ofP andG, letWG, andWP be the Weyl groups, and
Wr the relative Weyl group. The character of theG-moduleIR is given by

tr(IR) =
∑
w∈Wr

w · tr(R)

tr(3−1A∗)
, (8)



168 R. Herrera / Journal of Geometry and Physics 36 (2000) 163–177

whereA is theP -module associated to the holomorphic tangent bundleT 1,0F = A.
Evaluation at the identity element ofT yields

tr(IR)|e = χ(F,O(R)).

LetB1 andB2 denote the fundamental representations ofU(h) andSO(2n), respectively.
The vector bundlesQ, det(Q) andW overF = SO(2g + 2)/(U(h) × SO(2n)) pull back
toQ, L andW overMg,n, respectively. From the complex (7)

χ(Mg,n,O(ψ
p−qQ⊗ ψrW ⊗ Lq−(n−1))) = χ(F,O(Ep,q,r )),

where

Ep,q,r = ψp−qB∗
1 ⊗ ψrB2 ⊗ (detB∗

1)
q−(n−1) ⊗3−1(S

2B).

We shall now proceed to calculate (8). Letx1, . . . , xg+1 be the characters of the maximal
torus ofSO(2g + 2) corresponding to the polarisation{y2j−1 + iy2j : 1 ≤ j ≤ g + 1}
of C2g+2. The character of the fundamentalSO(2g + 2)-module is

∑h+n
j=1(xj + x−1

j ), that

of the fundamentalSO(2n)-module is
∑n
j=1(xj+h + x−1

j+h), and that of the fundamental

U(h)-module is
∑h
j=1x

−1
j . Thus,

tr(Ep,q,r ) =
∏
i≤h
x
q−(n−1)
i

∏
1≤j≤k≤h

(
1 − 1

xjxk

)( h∑
`=1

x
p−q
`

)(
n∑

m=1

xrm + x−r
m

)

and

tr(3−1A
∗) =

∏
1≤i<j≤h

(
1 − 1

xixj

) ∏
1≤k≤h
ε=1,...,n

(
1 − 1

xh+εxk

)(
1 − xh+ε

xk

)
.

Thus, we need to compute

∑
w∈Wr

w · tr(Ep,q,r )

tr(3−1A∗)
. (9)

We have

tr(Ep,q,r )

tr(3−1A∗)
=

∏
i≤h

x
q−(n−1)
i (1 − x−2

i )∏
ε=1,...,n(1 − (1/xh+εxk))(1 − (xh+ε/xk))




×

∑
j≤h

x
p−q
j




 n∑
j=1

xrj + x−r
j


 .

Using the identity(
1 − 1

yx

)(
1 − y

x

)
= 1

x

(
x + 1

x
−
(
y + 1

y

))
,
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tr(Ep,q,r )

tr(3−1A∗)
=

∏
i≤h

x
q
i (xi − x−1

i )∏
ε=1,...,n(xi + x−1

i − xh+ε − x−1
h+ε)




×

∑
j≤h

x
p−q
j




 n∑
j=1

xrj + x−r
j


 .

In order to perform the summation in (8), recall the form of the relative Weyl groupWr

of WSO(2g+2) with respect toWU(h) andWSO(2n). Firstly,

WSO(2g+2) = W
signs
2g+2oW

perms
g+1 ,

whereW signs consists of substitutionsxi 7→ x−1
i of an even number of variables from

{x1, . . . , xg+1} , andWpermsis the group of permutations of theg+1 weightsx1, . . . , xg+1.
Secondly,

WSO(2n) = W
signs
2n oW

perms
n ,

whereW signs consists of substitutionsxi 7→ x−1
i of an even number of variables from

{xg+2−n, . . . , xg+1}, andWpermsis the group of permutations of thenweightsxg+2−n, . . . ,
xg+1. Thirdly,

WU(g+1−n) = W
perms
g+1−n,

whereWpermsis the group of permutations of the(g + 1 − n) weightsx1, . . . , xg+1−n.
Thus,

Wr = W signs
oWperms

and it has 2h
(
h+ 2

2

)
elements, whereW signsconsists of all the substitutionsxi 7→ x−1

i

of an even number of variables modulo{xh+1 7→ x−1
h+1, . . . , xh+n 7→ x−1

h+n}, andWperms

consists of all the cycles which permute elements of the two disjoint sets{x1, . . . , xg+1−n}
and{xg+2−n, . . . , xg+1}, and their products modulo theWperms

g+1−n andWperms
n .

Adding first with respect toW signswe have
∏
i≤h

(xi − x−1
i )∏

1≤ε≤n(xi + x−1
i − xh+ε − x−1

h+ε)




∑
j≤h

(x
p
j − x

−p
j )

∏
l 6=j
(x
q
j − x

−q
j )




×
(

n∑
m=1

xrm+h + x−r
m+h

)
(10)

from which we immediately see that the holomorphic Euler characteristic vanishes ifp = 0
or q = 0, yielding the first four identities of the theorem.
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In order to prove the second part of the theorem, letp = q, r = 0. From (10) we have
the expression

2nh
∏
i≤h

(xi − x−1
i )(x

q
i − x

−q
i )∏

1≤ε≤n(xi + x−1
i − xh+ε − x−1

h+ε)
.

We can set one of the variables to 1, for examplexg+1 → 1, and adding with respect to
Wpermsgives

2nh

∏g

i=1F(wi, q)

Vm(w1, . . . , wg)

∑
]I=n−1

(−1)|I |+n(n−1)/2 Vm(wI )Vm(w
Î
)∏

ij∈IF (wij , q)
,

whereI = (i1, . . . , in−1) is a multi-index with 1≤ i1 < · · · < in−1 ≤ g, |I | = i1 + · · · +
in−1, Î denotes its complement in{1,2, . . . , q}, and Vm is the Vandermonde determinant
in the given variableswi . The last expression equals

2nh
g∏
i=1

F(wi, q)

∣∣∣∣∣∣∣
G(w1, q) w1G(w1, q) · · · wn−2

1 G(w1, q) 1 w1 · · · wh−1
1

...
...

...
...
...

...

G(wg, q) wgG(wg, q) · · · wn−2
g G(wg, q) 1 wg · · · wh−1

g

∣∣∣∣∣∣∣
Vm(w1, . . . , wg)

,

whose limit when{wi → 0} is

2nh(4q)g

∣∣∣∣∣∣∣
Gh(q) Gh+1(q) · · · Gh+n−2(q)
...

...
...

Gh−n+2(q) Gh−n+3(q) · · · Gh(q)

∣∣∣∣∣∣∣ .
�

Let

x

sinh(x)
=

∞∑
i=0

C2i x
2i ,

where

C2i = 1

(2i)!
22i (22i − 2)B2i

andB2i are the Bernoulli numbers. Recall thatPh(q) is the coefficient ofx3h in

(−qx)h
(

x

sinh(x)

)2h ( 2qx

sinh(2qx)

)

(cf. [17]), so that the coefficient ofq3h in Ph(q) is C2h. The top power ofq in (1/2hn) ×
Vh,n(q, q,0), q(2n−1)(g+1−n), has coefficient〈

c1(L)
(2n−1)(g+1−n)

((2n− 1)(g + 1 − n))!
, [Mg,n]

〉
,
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which is given by a sum of products of all the leading coefficients of all the entries in the
determinant in Theorem 3.1.

Proposition 3.1. The symplectic volume ofMg,n for a symplectic form representing the
cohomology class ofc1(L) is

v(Mg,n) = 1

4(h+1)(n−1)−g

∣∣∣∣∣∣∣
C2h C2h+2 · · · C2h+2n−4
...

...
...

C2h−2n+4 C2h−2n+6 · · · C2h

∣∣∣∣∣∣∣ .

4. Intersection numbers onMg,g−1Mg,g−1Mg,g−1

In this section, we shall restrict ourselves to the casen = g − 1 for g ≥ 2, in which the
real GrassmanniansGg = Gg,g−1 are quaternionic Kähler manifolds [13,18].

4.1. Cohomology of the real Grassmannian

Let Gg = Gg,g−1 be the real Grassmannian (g ≥ 2)

Gg = SO(2g + 2)

SO(4)SO(2g − 2)

parametrising real oriented four-dimensional subspaces ofR
2g+2. The isotropy group is

contained inSp(2g − 2)Sp(1) makingGg into a quaternion-Kähler manifold [13,18]. Let
Ŵ be the (complexified) tautologicalSO(4)-bundle overGg and Ŵ⊥ be its orthogonal
complement in the trivial bundle with fibreR2g+2. Note that(Ŵ⊥)c coincides withW of
Section 2. The tangent bundle ofGg factors as

T Gg = Ŵ ⊗ Ŵ⊥.

SinceSO(4) ∼= Sp(1)Sp(1) ∼= SU(2)SU(2),

Ŵc = U ⊗c V,

whereU, V are two copies of the fundamental representation ofSU(2), and the subscript
c denotes complexification.

Thus,

(T Gg)c = U ⊗ (V ⊗W)

whereU may be considered as a quaternionic line bundle andV ⊗W as the complementary
quaternionic bundle forSp(2g − 2).

We shall consider the ring generated by the following classes

u = −c2(U) ∈ H 4(Gg), v = −c2(V ) ∈ H 4(Gg).
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Although u and v are not integral classes, their multiples 4u, 4v are integral since the
vector bundlesS2U , S2V are globally defined, whereS2 denotes the second symmetric
tensor power of the corresponding representation or bundle. Suppose that 4u = l2 and
4v = l̂2, so that

ch(U) = el/2 + e−l/2 = 2 + u+ 1
12u

2 + 1
360u

3 + 1
20160u

4 + · · · ,

ch(V ) = el̂/2 + e−l̂/2 = 2 + v + 1
12v

2 + 1
360v

3 + 1
20160v

4 + · · ·
Later in the note, we shall need the following corollary to the Clebsh–Gordan formula,

which is readily proved by induction.

Lemma 4.1. Let H ∼= C2 be the standard representation of Sp(1) = SU(2). Let SnH
denote the nth symmetric tensor power of H. The tensor powers of the virtual representation
S2H − 3, where3 denotes a trivial representation of dimension3, satisfy

(S2H − 3)⊗m =
m∑
j=0

(
2m+ 1
j

)
S2(m−j)H.

We know thatGg is a spin manifold [13], and therefore there is a Dirac operatorD acting
on sections of the spin bundle1. Let E = V ⊗ W . Thus1 decomposes as1+ ⊕ 1−,
where

1+ = S2g−2U ⊕ S2g−4U ⊗ ∧2
0E ⊕ · · · ⊕ ∧2g−2

0 E,

1− = S2g−3U ⊗ E ⊕ S2g−5U ⊗ ∧3
0E ⊕ · · · ⊕ U ⊗ ∧2g−3

0 E

overGg. If F is a vector bundle overGg equipped with a connection, one can extend the
Dirac operatorD to an elliptic operator with coefficients inF

D(F) : 0(1+ ⊗ F) → 0(1− ⊗ F),

whose index is by definition ind(D(F )) = dim(kerD(F))− dim(cokerD(F)).
Note that

〈uivj , [Gg]〉 = 〈ujvi, [Gg]〉
due to the symmetry between the bundlesU andV . We define thequaternionic volumeof
Gg to be

v(Gg) = 〈(4u)2g−2, [Gg]〉 = 〈(4v)2g−2, [Gg]〉.
In order to compute the numbers〈uivj , [Gg]〉, we need to compute the following indices.

Proposition 4.1. Letfj (k) = ind(D(S2g−2+2kU ⊗ S2jV )). Then

fj (k)= (2j + 1)(2g + 2k − 1)(g + k + j)(g + k − 1 − j)

g(g − 1)(2g − 1)(2g − 2)

×
(

2g + k + j − 2
2g − 3

)(
2g + k − j − 3

2g − 3

)
.
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Proof. First, by twistor transform [10,13],

ind(D(S2g−2+2kU ⊗ S2jV )) = χ(Fg,O(S
2jV ⊗ Lk)),

whereFg = Fg,g−1. Thus, we apply the Borel–Weil–Bott theorem.
Let V (γ ) denote the complex irreducible representation ofSO(2g + 2) with dominant

weight γ , whereγ = (λ1, λ2, . . . , λg+1) with λ1 ≥ λ2 ≥ · · · ≥ λg+1 ≥ 0. For ex-
ample,V (1,0, . . . ,0) = C2g+2 is the fundamental representation ofSO(2g + 2) and
V (1,1,0, . . . ,0) = ∧2

C
2g+2 = so(2g + 2,C) is the complexified adjoint representation.

Observe thatQ corresponds to the fundamental representation(1,0) of U(2), so that
L = det(Q) and S2Q correspond to the weights(1,1) and (2,0), respectively. Thus,
S2V = S2Q⊗L−1 corresponds to(1,−1). By embedding the maximal torus ofU(2) into
the one ofSO(2g + 2) in the obvious way, we see that the virtual representation

4(g−1)+1∑
r=0

Hr(Fg,O(S
2jV ⊗ Lk)) ∼= V (k + j, k − j,0, . . . ,0),

and consequently,

χ(Fg,O(S
2jV ⊗ Lk)) = dimV (k + j, k − j,0, . . . ,0).

The latter is easily computed by using the Weyl dimension formula

dimV (γ ) =
∏
α∈R+

〈α, δ + γ 〉
〈α, δ〉 ,

whereR+ denotes the positive roots ofSO(2g + 2):

R+ = {ei ± ej , i < j},
where{ei} is the canonical basis ofR2g+2, andδ = (g, g − 1, g − 2, . . . ,1,0). �

Proposition 4.2. Evaluation on the fundamental class[Gg] yields

v(Gg) = 2

g

(
4g − 3
2g − 1

)
,

and more generally,

〈42g−2u2g−2−j vj , [Gg]〉 = (−1)j (4g − 2j − 3)

(
2g − 2
j

)(
4g − 3
2j + 1

)−1

v(Gg).

Proof. Observe that the index

χ(Fg,O(L
k ⊗ (S2V − 3)⊗j ))= 〈elk(ch(S2V − 3))j td(Fg), [Fg]〉

=
j∑
i=0

(−1)i
(

2j + 1
i

)
fj−i (k)
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by the Atiyah–Singer index theorem and Lemma 4.1. This is a polynomial ink for eachj ,
which we denote byhj (k). Furthermore,

hj (k)= (−1)j
(2j + 1)!(2g − 2j − 4)!(2g + 2k − 1)

j !g(2g − 1)(2g − 2 − j)!

×(2g2 + 4gk− (j + 2)g − 2k + 2k2)

(
2g + k − j − 3

2g − 2j − 4

)(
2g − 2 + k

2g − 2

)

and has degree 4g − 3 − 2j . Its leading term is, on the one hand,

2k4g−3−2j

(4g − 3 − 2j)!
〈42g−2u2g−2−j vj , [Gg]〉,

since the lowest-dimensional component of ch((S2V − 3)⊗n) is vn. On the other hand, the
leading term is equal to

(−1)j
4(2j + 1)!k4g−3−2j

j !g(2g − 1)!(2g − 2 − j)!
. �

Note that we have only missed the intersection numbers involving the extra cohomology
class ofGg which appears in dimension 2g − 2.

4.2. Intersection numbers onMg,g−1

The complex manifoldFg = Fg,g−1 has complex dimension 4g − 3, and parametrises
complex two-dimensional subspaces5 of C2g+2 which are isotropic with respect to the
standardSO(2g+ 2)-invariant bilinear form. It is a contact Kähler–Einstein manifold [10],
which projects ontoGg, π : Fg → Gg, by sending5 to the four-dimensional subspace
of R2g+2 whose complexification is5 ⊕ 5. Each fibre is isomorphic to a rational curve
SO(4)/U(2) ∼= CP1 in Fg.

The Picard group Pic(Fg) is generated by a line bundleL → Fg such that [10]
1. L|π−1(x) = O(2) onπ−1(x) ∼= CP1.

2. L2g−1 is isomorphic to the anticanonical bundleK−1
F of Fg.

3. If Q denotes the dual of the tautologicalU(2)-bundle overFg, L = det(Q).

Theorem 4.1. The intersection numbers〈uivj , [Mg,g−1]〉, wherei + j = 4g − 6, are
skew-symmetric in u and v. Evaluating on the fundamental class[Mg,g−1] yields

〈u2g−3−j vj , [Mg,g−1]〉 = (−1)j

42g−5

(
2g − 2
j

)(
4g − 3
2j + 1

)−1(
4g − 3
2g − 1

)
.

Proof. As a(4g−6)-dimensional submanifold ofFg,Mg,g−1 is Poincaré dual to the Euler
classc3(S

2Q), which is easily computed from the identityS2Q = L⊗π∗S2V and is equal
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to 4l(u− v). Hence,

〈u2g−3−j vj , [Mg,g−1]〉 = 〈4lu2g−3−j vj (u− v), [Fg]〉
= 8〈u2g−2−j vj − u2g−3−j vj+1, [Gg]〉

= (−1)j

42g−5

(
2g − 2
j

)(
4g − 3
2j + 1

)−1(
4g − 3
2g − 1

)
,

where the second equality follows from twistor transform. �

4.3. Tangent relations and Newstead-type vanishings

The holomorphic tangent bundle ofFg satisfies

T 1,0Fg = Q⊗W ⊕ ∧2Q = Q⊗W ⊕ L,

as in Section 2.
There is a localC∞ isomorphism

π∗U = L1/2 ⊕ L−1/2,

so thatl = c1(L) ∈ H 2(Fg,Z), and by the Leray–Hirsch theorem(
l

2

)2

+ π∗c2(U) = 0,

i.e. l2 = 4u (omittingπ∗).
From Lemma 2.1,

T 1,0Mg,g−1=Q⊗W − ψ2Q=(2g + 2) V ⊗ L1/2 − 2ψ2V ⊗ L− 2L− ψ2V − 2,

where we have omittedπ∗ andψ2 denotes the second Adams operator on vector bundles
[4]. As in [6],

c(Mg,g−1) = ((1 + l/2 + l̂/2)(1 + l/2 − l̂/2))2g+2

(1 + l + l̂)2(1 + l − l̂)2(1 + l)2(1 − l̂2)
, (11)

wherel̂ is defined formally to be 2
√
v (we also denote byu andv the pull-backs toMg,g−1

of the quaternionic classes onGg). Thus,

p(Mg,g−1) = (1 + 2(u+ v)+ (u− v)2)2g+2

(1 + 4u)2(1 + 4v)2(1 + 8(u+ v)+ 16(u− v)2)2
(12)

and

Â(Mg,g−1)=
( √

u+ √
v

sinh(
√
u+ √

v)

√
u− √

v

sinh(
√
u− √

v)

)2g+2

×
(

sinh(2(
√
u+√

v))

2(
√
u+√

v)

sinh(2(
√
u−√

v))

2(
√
u−√

v)

sinh(2
√
u)

2
√
u

sinh(2
√
v)

2
√
v

)2

.

(13)

The expressions (12) and (13) are symmetric inu andv. Hence, we have the following.
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Corollary 4.1. For g ≥ 2, all the Pontrjagin numbers vanish as well as

Â2g−3(Mg,g−1) = 0,

the Chern classes

c4g−6(Mg,g−1) = c4g−7(Mg,g−1) = 0

and in particular,

χ(Mg,g−1) = 0.

Furthermore,

χ(Mg,O(T
1,0Mg)) =




−1 if g = 2,
−6 if g = 3,
−2g + 1 if g ≥ 4,

χ(Mg,O(T
0,1Mg)) =

{−1 if g 6= 3,
2 if g = 3.

Proof. The Chern class vanishings are proved by expanding the expression (11) and using
the intersection numbers in Theorem 4.1.

The holomorphic Euler characteristics follow from theK-theoretical identity

T 1,0Mg,g−1 = (2g + 2)V ⊗ L1/2 − 2S2V ⊗ L− S2V − 1

and the formulae of Proposition 4.1. Let(k) denote the operation of tensoring withLk. Since
Mg,g−1 is the zero set of a non-degenerate section of the bundleσ ∗ = S2Q = S2V (1), we
have a Koszul complex

0 → OF (∧3σ(k)) → OF (∧2σ(k)) → OF (σ (k)) → OF (k) → OM(k) → 0,

which is equivalent to

0→OF (k − 3)→OF (S2V (k − 2))→OF (S2V (k − 1)) → OF (k) → OM(k) → 0.

Tensoring the complex byV andS2V , we see that

χ(Mg,g−1,O(V (k)))= f1/2(k)− f3/2(k − 1)− f1/2(k − 1)+ f3/2(k − 2)

+f1/2(k − 2)− f1/2(k − 3)

and

χ(Mg,g−1,O(S
2V (k)))= f1(k)− f2(k − 1)− f1(k − 1)− f0(k − 1)+ f2(k − 2)

+f1(k − 2)+ f0(k − 2)− f1(k − 3),

respectively. �

Remark. These vanishings constitute a generalisation of the Newstead conjectures to the
spacesMg,g−1. In fact, the vanishings forMg,1 are due to the triviality of TJ(6g) and the



R. Herrera / Journal of Geometry and Physics 36 (2000) 163–177 177

vanishings forMg,2 were first found by Newstead[11, Conjectures (a) and (b)]and proved
by Kirwan[9] and Gieseker[5].

Conjecture 4.1. The top(g + 1 − n) Chern classes ofMg,n vanish, i.e.

c(2n−2)(g+1−n)+j (Mg,n) = 0 for j ≥ 1.
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