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Abstract

We investigate the geometry and topology of a moduli space of orthogonal vector bundles on
a hyperelliptic Riemann surface, and derive results on intersection pairings by means of twistor
transform and index calculations. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this note, we study certain moduli spaces, , of rank 2: orthogonal vector bundles
over hyperelliptic Riemann surfac&sof genusg, generalising some of the results proved
in [6,7,15]. Some members of this family of moduli spaces are very familiar; for example,
Mg 1 is the Jacobian oE, and M, > is the moduli space of rank 2 holomorphic stable
vector bundles oveE with fixed and odd determinant (cf. [12]). Ramanan [12] identified
Mg, with a complete intersection of two ‘quadric varieties’ in a complex Grassmannian,
which shows the existence of a positive line bunfll@ver M, ,. Hence, it is natural
to study the Hilbert polynomial dil(rHO(Mg,,,, O(L¥))) as a direct generalisation of the
Verlinde formula of M, > (cf. [3,16,17,19]), as well as the intersection theoryAdf, ,,

(cf. [2,8,17,19]). We derive our results as in [7], by using the embeddinggf, in a
homogeneous space.

In Section 2, we give the definition d¥1, , and find aK -theoretic decomposition of its
holomorphic tangent bundle. In Section 3, we prove some vanishings and symmetries of
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holomorphic Euler characteristics for virtual vector bundles and computéettiade-type
formuladim(HO(Mg,n, O(L*))) as a determinant of a matrix whose entries are Verlinde
dimensions themselves. From this formula, we determine the symplectic voluivig pf

In Section 4, we generalise results from [6,7], by computing all the intersection numbers of
a subring of*(M, .—1) generated by two quaternionic-related classes. Furthermore, we
prove generalisations of the Newstead conjecturestor, 1 (cf. [11, Conjecture (a)—(c)]).

2. Moduli spaces

Let X, be a hyperelliptic Riemann surface of genusvith involution: : ¥ — X
and Weierstrass pointo, ..., wpe42}. Consider the special Clifford groupQ2n) =
C* xz, Spin2n), which fits into the following commutative diagram:

1 - C* — SAQ2) — SO21) — 1

T t I
1 - Z; — Spin2n) — SAQ2n) — 1

Let M, , denote the moduli space of semistable, holomorphic, rankector bundles

E over X, with the following properties:

e FEisan (orthogonal) vector bundle with structure gr&@@{2») and with a lift of structure
group toSQ2n).

e E is t-invariant, i.e. there is a lift of to E (denoted by the same symbol) such that
E = *E. Thus, we have the restrictions ofo the fibres over the Weierstrass points
L1 Ey, > Ey forallj=1,...,2¢ +2. Sincer? = 1, the eigenvalues afon these
fibres aret1, and we denote the eigenspaceﬂzg.

e EissuchthatdinKE ® A);j) =1forallj =1,...,2¢g+ 2, whereA is anc-invariant
line bundle overix of degree 2 — 1.

Example.
1. Casen = 1. SinceSQ(2) = U (1), M, 1 is the Jacobiad (%) of X5 (cf. [12]).
2. Casen = 2. The special Clifford group is

SQ4) = {(A, B) € GI(2) x GI(2) | det(A) - det(B) = 1}

and the homomorphisr8G4) — SQ4) is given by(A,B) — A ® B. Thus, a

SQ4)-bundle is essentially a pair &81(2)-bundlesM, N with det(M) ® det(N) = 1,

a trivial bundle. Since the Clifford grou@(4) does not distinguish betweéd and N,

we have thaiM, » is the moduli space of (stable) vector bundles of rank 2 and fixed odd

determinant (cf. [12]).

Ramanan proved in [12, Theorem 3] thet, ,, is isomorphic to the variety afg + 1 —
n)-dimensional subspaces 6£$+2 which are isotropic with respect to the two quadratic
forms:

2g+2 2g+2

Y oyh o Y eyl (1)
i=1 i=1
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Therefore, we have a holomorphic embedding\éf ,, into the complex partial flag mani-
fold

_ SQ2g +2)
81T U(g+1—n) x SQ2n)’

which clearly parametrises thg + 1 — n)-dimensional subspaces 6f¢*+2 which are
isotropic with respect to the first quadratic form. The flag manifgld, is a twistor space
for

B SQ2g +2)
T SO2g +2—2n) x SQ2n)’

Gen

since the fibre&sQ2¢g + 2 — 2n) /U (g + 1 — n) parametrises orthogonal, almost-complex
structures on the real orientédg + 2 — 2n)-dimensional subspaces Bf$+2, which are
compatible with the orientation (cf. [1,14]).

Let Q, W denote the duals of the tautological complex vector bundles Bygrwith
fibresCs+1—" €2 and structure groups (g + 1 — n), SQ2n), respectively. The second
guadratic form determines a holomorphic, non-degenerate section of the second symmetric
tensor poweis2Q of Q, whose zero-set is preciseMl, ,. Thus, we know that1, , is a
smooth complex manifold of complex dimensi@x — 1)(g + 1 — n).

The splitting of the standard representatiorS@(2g + 2) on C2+2 underU(g + 1 —

n) x SQ2n) yields

0" QOW =2g+2. )
This implies that
50(2g+ 2 = (g +1-n) ®s02n), ® (A0 ® 0B W) & (20D QB W),

wheren?Q @ Q® W corresponds to the holomorphic tangent burfché 7, ,, of 7, ,. Here

A?Q isthe holomorphic tangent bundle to the Hermitian filB&&2g +2—2n) / U (g+1—n)

of Fy.» = Gg.» and its complemen® ® W is a holomorphic horizontal bundle (cf. [1]).
On the other hand,

T F g nlMy, = THOMgn @ 520\,
so that

T=T"M,,=r?0® Q0@ W - 520,
where we are denoting bundles and their pull-backs by the same symbols.
Lemma 2.1.

T=08®W-y?Q,

wherey? = §2 — A?in K-theory.
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The operatory? is one of the series of Adams operators, defined by the formula
d
Z(W’E)t” =r— td—logA_,E,
p=0 g

whereE € K (M) has virtual rank- and A, E = Y_;_ (A’ E)t' [4]. Eachy” is a ring
homomorphism irK -theory, and is characterized by the property that

ch (WP E) = pFeh(E), ©)

where ch(E) denotes the term of dimensiok i the Chern character. We can readily see
that

c1(T) = 2(n — Der(L), (4)

sinceL = det(Q) on F. Note thatL is a positive line bundle orf, , and, therefore, also
on Mg .

SinceQ* + Q = 2g + 2 — W is a genuine complex vector bundle of ranlg2- 1 — n)
with total Chern class(W)~1, we obtain relations in the cohomology ring for dimension
greaterthan @ + 1 — n).

3. Character calculations

Leth = g + 1 — n and consider the holomorphic Euler characteristics
Vin (P, 4, 1) = X (Mg, OWP™1Q @ LI~V @ y"W)). (5)

Letw =x+x"1t—2and
_(x”—x_”)(x—x_l)_ p+h p+h—-1 h
Fwp=—"r7->5 _};(4<2h+1+ on-1 )V ©®

Let G(w, p) be such thaG (w, p)F(w, p) =1, i.e.

— o~ (—1)™ Py (p)
Gw, p) =Y (-D)"Gu(p)w™ =Y ———T,
m=0 m=0 (4]7) +1w
where
PRI | VA (R — )m 0
Pu(p) = 2= (7D (Sinz(jn/Zp) nomes
0, m < 0.
Theorem 3.1.

V/’l,n(o:qu):Ov Vh,n(p,o, r):O’

Vh,}’l(p5 q, r) = (_1)th,n(_P7 —-q, I"), Vh,n([)v q, r) = _Vh,l’l(_p7 q, r)v
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P P R
onh h'(CI) h+.1(Q) h+ ‘ 2(q)

Vin(qg,q,0) = (Ag) DD

Prh_ni2(q) Ph_pn+3(q) - Pi(q)
Remark.
X(Mg,ru O(Lqi(nil))) =dim Ho(Mg’n, O(qu("*l)))

by Kodaira vanishing theorem sindeis a positive line bundle oM, ,, Eq.(4) and Serre
duality. Thus,

Vin(q,q,0)

i 0 g—(n—=1)yy _
dim H-(M, ,, O(L ) = 2nh

constitutes our Verlinde-type formula

Remark. Note thatV}, 2(q, ¢, 0)/4h = Py(g) is the original Verlinde formula

Py(q) = dim(HO (Mg 2, O(LT™h)),
Vin(q, ¢, 0) is the determinant of a matrix whose entries are Verlinde dimensions them-
selvesand the classic result

Vi1(q,q,0)

o = dim(HA(TIZ), O(L))) = (49)%.

Remark. The second line in TheoreBlrepresents the symmetriesiof, (p, g, r).
Proof. Leto* = §2Q andm = rk(52Q). We shall use the Koszul complex

0> OF (\"o @ V) — of(Am—lc;@v) S OrORY)
— Or(V) > Opq(V) = 0 (1)

and the Atiyah—Bott fixed point theorem, whérds any virtual bundle ovefy ,.

Recall that, on a homogeneous space, holomorphic Euler characteristics can be computed
by means of the Atiyah—Bott fixed point formula. Lét be a reductive Lie groupP a
parabolic subgroup aff, andF = G/ P the corresponding flag manifold. A representation
R of P determines both a holomorphic vector bun@fle= G x p R over F and a virtual
G-module

Ir = ) (-D'H'(F,OR)).

Let T be a common maximal torus &f andG, let W, andWp be the Weyl groups, and
W; the relative Weyl group. The character of tiemoduleZy is given by

tr(R
tr(Zg) = Z w - ﬁ’ 8)
weW,
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where A is the P-module associated to the holomorphic tangent budthF =
Evaluation at the identity element @fyields

tr(Zg)le = x (F, O(R)).

Let B1 andB» denote the fundamental representation8 ¢f) andSQ(2n), respectively.
The vector bundle®), det Q) andW overF = SQ2g + 2)/(U (h) x SQ2n)) pull back
to 0, L andW over M, ,, respectively. From the complex (7)

XMgn, OWP 10 Q@YW ® L1==Dyy = y (F, O(EP?7)Y),
where
EPTT =y P B @Y B2 ® (deth)q—M—l) ® A_1(S2B).

We shall now proceed to calculate (8). gt . . ., x,11 be the characters of the maximal
torus of SO2g + 2) corresponding to the polarisatidmy; 1 +1y2; : 1 < j < g +1)
of C%¢+2, The character of the fundamen®&D(2g + 2)- module |th+”(x, +x7 1), that

of the fundamentabQ(2n)-module ISZJ 1(Xj4n + x7,), and that of the fundamental
U (h)-module ISZ]:lxj ! Thus,

oo o 2 )
J m=1

i<h 1<j<k<h

j+h

and

1 1
tr(A_14% =[] <1— —> I1 <1— ) (1 — @) .
s XiXj/) | <k<n Xh+eXk Xk

1<i<j<h
ThUS, we need to compute

Z w - tr(Ep’q’r) ) (9)
S (A

We have

tr(qur) 1_[ xiq (n 1)(1_xi 2)
tr(A_1A%) [Te=a,.. 0@ = Q/xnsex)) (L= (Xnte/xk))

i<h

n
. (z) (zx;- ) |
Jj=h j=1

Using the identity



R. Herrera/ Journal of Geometry and Physics 36 (2000) 163-177 169

tr(EP47) 1—[ xf (xi —xi_l)

tr(A1A%) "\ TTemy O+ 27— Xhge — 2;0,)

n
P—q r —r
x| 220 | 22+
j=<h Jj=1
In order to perform the summation in (8), recall the form of the relative Weyl gigup
of Wsqze-+2) With respect toVy () andWsq,y. Firstly,
signs perms
Wsazg+2) = Woeio X Wiy s
where WSI91S consists of substitutions; xi‘l of an even number of variables from

{x1,..., xg41}, andWPE™MSis the group of permutations of tiget- 1 weightsry, ..., xg41.
Secondly,

signs erms
Wsozn) = Wz,,g x W™

where WSI9S consists of substitutions; xlfl of an even number of variables from
{Xg42-n, ..., Xg11}, andWP™MSis the group of permutations of theveightsxgo_,, . ..,
Xg+1. Thirdly,

perms
Wug+1-n) = Woi1
whereWPe™Sis the group of permutations of thig + 1 — n) weightsxy, ..., xg41-4.
Thus,

W, = Wsignsx yperms

h+2
2
of an even number of variables modulg, 11 — x, . ..., X4in > X505}, and WPeMS
consists of all the cycles which permute elements of the two disjoin{egts. ., xg 114}
and{xgi2-, ..., xg+1}, and their products modulo th&!;fl"jsn andwpPem™s
Adding first with respect tavSi9"Swe have

1

and it has 2 < ) elements, wher&S19"S consists of all the substitutions — x;

1
I = 1 D2 EE) ) (TR

1 _
i< [ T1<e<n (i + X7 = Xne — X, 7,) j<h I#j
n
x (Zx:m + x,;ih) (10)
m=1

from which we immediately see that the holomorphic Euler characteristic vanighes @
or ¢ = 0, yielding the first four identities of the theorem.
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In order to prove the second part of the theoremplet ¢, r = 0. From (10) we have
the expression
onh (i —x7 DG —x77)
1 SN
i<h [ice<n i + 577 = Xnge — x,7)

We can set one of the variables to 1, for examgle; — 1, and adding with respect to
WPeMSgives

vm(wz, ..., wg)ﬁI:n—l ]‘L.jelp(wij, q)
wherel = (i, ..., i,—1) iSamulti-indexwith 1< iy < -+ <ip_1 < g, || =i1+- -+

in_1, I denotes its complement{d, 2, ..., ¢}, and Vm is the Vandermonde determinant
in the given variables);. The last expression equals

Gwi, ) wiG(wi,q) - wi2G(w,q) 1wy --- w

G(wg.q) weG(wg,q) -+ wi?Gwg,q) L wg -+ w

g
2nh F is g 9
izl_ll (wi, q) vm(way, ..., wg)
whose limit whenw; — 0} is
Gr(q) Gnyalq) - Gpyn—2(q)
2nh4q)® | : :
Ghn+2(q) Gpn+3lq) --- Gn(q)
O
Let
X o0
_ =3 Cy 12,
sinh(x) ; 2%
where

1 L
Coi = ——2%(2% —2)By,
2i (21)' ( ) B2

andBy; are the Bernoulli numbers. Recall that(g) is the coefficient of3 in

o (qi) (s
sinh(x) sinh(2gx)

(cf. [17]), so that the coefficient af*" in P, (q) is C2;,. The top power of in (1/2hn) x
Vin(q. g, 0), ¢@~D&+1=m has coefficient
c1(L)@—Dg+1-n)
R [Mgn] ,
(2n —1(g +1—n))!
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which is given by a sum of products of all the leading coefficients of all the entries in the
determinant in Theorem 3.1.

Proposition 3.1. The symplectic volume ¥, ,, for a symplectic form representing the
cohomology class afi(L) is

1 Con Conv2 -+ Conyon—a

VMen) = 205 Da D

Con—onya Cop_opie - Cop

4. Intersection numbers onMg o1

In this section, we shall restrict ourselves to the caseg — 1 for ¢ > 2, in which the
real Grassmanniarg, = G, ,—1 are quaternionic Kahler manifolds [13,18].

4.1. Cohomology of the real Grassmannian

LetG, = G, o1 be the real Grassmanniag £ 2)

_ SQ2g+2)
~ SQ4)SO2g — 2)

parametrising real oriented four-dimensional subspacé@?&f2. The isotropy group is
contained inSp(2g — 2)Sp(1) making G, into a quaternion-Kéhler manifold [13,18]. Let
W be the (complexified) tautologic8Q4)-bundle overg, and W+ be its orthogonal
complement in the trivial bundle with fibi&26+2. Note that(W.). coincides withw of
Section 2. The tangent bundle @f factors as

G

TG, =W W
SinceSQ4) = Sp1)Spl) = SU2)SUR),
We=U®V,

whereU, V are two copies of the fundamental representatio8ld®), and the subscript
¢ denotes complexification.
Thus,

(TG)e=U® (VW)

wherelU may be considered as a quaternionic line bundlelagdW as the complementary
guaternionic bundle foBp2g — 2).
We shall consider the ring generated by the following classes

u=—c(U) € H'Gy),  v=—ca(V) € H*(Gy).
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Although z and v are not integral classes, their multiples, 4v are integral since the
vector bundless2U, $2V are globally defined, wher§? denotes the second symmetric
tensor power of the corresponding representation or bundle. Suppose: that/ and
4v = [2, so that

ch(U) = €2 + &2 = 2+ u + Hu® + g + sorgt® + -,
ch(V) =2 +e 2 =2+ v+ Hv? + gqv® + it + -
Later in the note, we shall need the following corollary to the Clebsh—Gordan formula,

which is readily proved by induction.

Lemma 4.1. Let H = C? be the standard representation of (3p = SU(2). Let S"H
denote the nth symmetric tensor power of H. The tensor powers of the virtual representation
S2H — 3, where3 denotes a trivial representation of dimensi®rsatisfy

(SPH —3)®" =)~ (2’” + 1) S2m=i g,
j=0

We know thaiG, is a spin manifold [13], and therefore there is a Dirac operAtacting
on sections of the spin bundle. Let E = V ® W. ThusA decomposes aA; & A_,
where

A =S22U @SB URNE®-- & AET°E,
A=SBSUQEBGSHURANED - 0UAFE

overG,. If F is a vector bundle ovefj, equipped with a connection, one can extend the
Dirac operatorD to an elliptic operator with coefficients if

D(F):T(A+® F) > T(A_® F),

whose index is by definition ind (F)) = dim(ker D(F)) — dim(cokerD(F)).
Note that

W'l [Gel) = (! v', [Gyl)

due to the symmetry between the bundleandV. We define theuaternionic volumef
G, to be

V(Ge) = ((Au)%72,[Ge]) = (4v)%72,[G,]).

In order to compute the numbets v/, [G,]), we need to compute the following indices.

Proposition 4.1. Let f; (k) = ind(D (5?22 U ® $2/V)). Then

QRji+D2g+2k—1D(g+k+j)(g+k—1—))
glg—D@2g—-1(2e -2

L(28tkt-2) (28 k-3
2¢ —3 2¢g —3 ’

fitk) =
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Proof. First, by twistor transform [10,13],
iNd(D (5267272 @ S27V)) = x(F,, OS¥V ® LK),

whereF, = F, ._1. Thus, we apply the Borel-Weil-Bott theorem.

Let V(y) denote the complex irreducible representatiols6f2g + 2) with dominant
weight y, wherey = (Ag, A2, ..., Ag41) With Ay > Ao > .. > Ageq1 > 0. For ex-
ample,V(1,0,...,00 = C%+2 s the fundamental representation 8(2g + 2) and
V(1,1,0,...,0) = A2C%12 = 50(2g + 2, C) is the complexified adjoint representation.

Observe thaQ corresponds to the fundamental representatiof) of U (2), so that
L = det(Q) and $2Q correspond to the weightd, 1) and (2, 0), respectively. Thus,
$2V = $20 ® L~1 corresponds t¢1, —1). By embedding the maximal torus bf(2) into
the one ofSQ(2¢ + 2) in the obvious way, we see that the virtual representation

4(g—-D+1 .
Y H(Fn0SPVeLY)=Vk+jk—j0...0),
r=0

and consequently,
X (Fe, OS¥FV @ LY) =dmV(k + j, k- j,0,...,0).
The latter is easily computed by using the Weyl dimension formula

(o, 8+ y)

dmvy) = [] 0]

aeRy

whereR denotes the positive roots 80(2¢ + 2):
Ry ={e*eji<jh
where{e;} is the canonical basis @212, ands = (g, g — 1, g—2,...,1,0). O
Proposition 4.2. Evaluation on the fundamental claig%,] yields
2(4g -3
@ =y (Zg - 1> ’

and more generally

-1
3 P . . 29 — 2 49 — 3
(42g 2u2g 2 jvj’ [gg]) — (—1)1(48 _ 21 -3 < gj ) (zf n 1) V(gg).

Proof. Observe that the index

X (Fg, O(LF @ (82V — 3)®7)) = (¥(ch($2V — 3))/td(F,), [Fel)

L (2 +1
=y (P e
i=0
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by the Atiyah—Singer index theorem and Lemma 4.1. This is a polynomialdneachy,
which we denote by ; (k). Furthermore,

2j+D'2g—-2j—-H'(2g+2k—-1)
Jjlg(2g —D(2g —2—j)!

x(2g% + 4gk— (j + 2)g — 2k + 2k?) (

hj(k) = (1)

28 +k—j—3 29 —2+k
2¢ —2j—4 2¢g -2

and has degreegd— 3 — 2j. Its leading term is, on the one hand,

2k4g7372j

Gy &G,

since the lowest-dimensional component of @8V — 3)®") is v". On the other hand, the
leading term is equal to

(1)) H2j+ 1)1k48—3-2)

Note that we have only missed the intersection numbers involving the extra cohnomology
class ofGg which appears in dimensiorg2- 2.

4.2. Intersection numbers ok, o1

The complex manifoldF, = F, .1 has complex dimensiong4—- 3, and parametrises
complex two-dimensional subspadasof €22 which are isotropic with respect to the
standard5Q(2g + 2)-invariant bilinear form. It is a contact Kéhler—Einstein manifold [10],
which projects ontdj,, w : F, — G, by sendingIl to the four-dimensional subspace
of R2+2 whose complexification i$I & TI. Each fibre is isomorphic to a rational curve
SQ4)/U(2) = CPtin F,.

The Picard group P{¢F,) is generated by a line bundle— F, such that [10]

1. Lly-1 = O onz~1(x) = CPL
2. L%~1is isomorphic to the anticanonical bund{’gzl of 7.
3. If Q denotes the dual of the tautologida(2)-bundle overF,, L = det(Q).

Theorem 4.1. The intersection number&' v/, [M, o_1]), Wherei + j = 4g — 6, are
skew-symmetric in u and v. Evaluating on the fundamental ¢legs, 1] yields

. 1
23—, j = O (2s-2) (483 s
(u v/, [Mge-al) = 4235 j 2j+1 26-1)"

Proof. As a(4g— 6)-dimensional submanifold of,, M, .1 is Poincare dual to the Euler
classcz(S2Q), which is easily computed from the identi§f Q = L @ 7*$?V and is equal
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175
to 4l(u — v). Hence,
(P83 v) [M g 1) = (AU 730/ (u — v), [F])
=8(u? 27 Iy) —u2737yI 1 [G,])
(1) (2g-2)\ [4g—-3\ ‘[4g-3
T 45\ 2j+1 20-1)°
where the second equality follows from twistor transform. O

4.3. Tangent relations and Newstead-type vanishings

The holomorphic tangent bundle & satisfies

TYOF, =0@Waor20=00WaL,
as in Section 2.
There is a local*° isomorphism

U =LY L7,

sothatl = ¢1(L) € Hz(}'g, 7), and by the Leray—Hirsch theorem

l 2
(é) +7m*co(U) =0,

i.e.l2 = 4u (omitting 7*).
From Lemma 2.1,
TYM, , 1=0 @ W — y20=(2g +2) V@ LY? = 2y?V @ L — 2L — ¢V — 2,

where we have omitted* andy2 denotes the second Adams operator on vector bundles
[4]. Asin [6],

(A+1/2+1/2)A+1/2—1/2))%+2
M, o1) = “ i _ 11
“Meet) = AT - DAt D2 (1)

where! is defined formally to be &v (we also denote by andv the pull-backs toVg ,_1
of the quaternionic classes 6)). Thus,

_ (1+2(u +v) + (u — v)?)*+2
PMes—1) = 74020+ 40)2(L 1 8(u 1 v) + 160 — 0)D2 (12)

and

i R SN
AMg 1) = <sinh(ﬁ+ﬁ> sinh(y/u — ﬁ))

5 <sinw2(ﬁ+ﬁ)) Sinh(2(/u—/v)) sinh(2,/u) sinh(2\/5))2
N RN TN TN T R N NI

(13)
The expressions (12) and (13) are symmetrie andv. Hence, we have the following.
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Corollary 4.1. For g > 2, all the Pontrjagin numbers vanish as well as
Azg 3(Myg 1) =0,
the Chern classes
cag—6(Mgg—1) = c4g-7(Mg —1) =0

and in particular,

X(Mg 1) =0.
Furthermore
-1 if ¢g=2,
X (Mg, O(TYOM,)) = { —6 if g=3,
—2g+1 if g=>4,
R Pl e

Proof. The Chern class vanishings are proved by expanding the expression (11) and using
the intersection numbers in Theorem 4.1.
The holomorphic Euler characteristics follow from tketheoretical identity

TYOM, o 1=Q2¢+2VeLY2-252v @ L — §?v — 1

and the formulae of Proposition 4.1. L&) denote the operation of tensoring with. Since
M, .1 is the zero set of a non-degenerate section of the buridie $2Q = $2V (1), we
have a Koszul complex

0— Or(A%0 (k) = O (Ao (k) — OF(0 (k) = OFk) = Opmk) — 0,
which is equivalent to
0—>Ox(k —3)—>O£(S?V(k — 2)—>OF(S?V(k — 1)) = Ox(k) — Opq(k) — 0.
Tensoring the complex by andS?V, we see that
X Mg -1, OV (K)) = fr2k) — f32(k — D) — frj2tk — 1) + fz/2(k — 2)
+f172tk — 2) — f172(k — 3)
and

X (Mg g1, O(S?V (1)) = f1(k) — fatk = 1) — fitk = 1) — fotk — 1) + fatk — 2)
+f1tk —2) + folk —2) — fi(k —3),

respectively. O

Remark. These vanishings constitute a generalisation of the Newstead conjectures to the
spacesM, ,1. In fact, the vanishings foiM, ; are due to the triviality of T2, ) and the
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vanishings fotM, » were first found by Newste#ill, Conjectures (a) and (bdhd proved
by Kirwan[9] and Giesekef5].

Conijecture 4.1. The top(g + 1 — n) Chern classes o, , vanishi.e.

Cn-2)(g+1-my+jMgn) =0  for j > 1.
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