Intersection numbers on moduli spaces and symmetries of a Verlinde formula II

R. Herrera
Department of Mathematics, Yale University, 10 Hillhouse Avenue, PO Box 208283, New Haven, CT 06520-8283, USA
Received 23 February 1999; received in revised form 7 March 2000

Abstract

We investigate the geometry and topology of a moduli space of orthogonal vector bundles on a hyperelliptic Riemann surface, and derive results on intersection pairings by means of twistor transform and index calculations. © 2000 Elsevier Science B.V. All rights reserved.

MSC: 81T30; 83E30

Sub. Class.: Strings
Keywords: Hyperelliptic Riemann surfaces; Moduli spaces; Verlinde formula

1. Introduction

In this note, we study certain moduli spaces $\mathcal{M}_{g, n}$ of rank $2 n$ orthogonal vector bundles over hyperelliptic Riemann surfaces Σ of genus g, generalising some of the results proved in $[6,7,15]$. Some members of this family of moduli spaces are very familiar; for example, $\mathcal{M}_{g, 1}$ is the Jacobian of Σ, and $\mathcal{M}_{g, 2}$ is the moduli space of rank 2 holomorphic stable vector bundles over Σ with fixed and odd determinant (cf. [12]). Ramanan [12] identified $\mathcal{M}_{g, n}$ with a complete intersection of two 'quadric varieties' in a complex Grassmannian, which shows the existence of a positive line bundle L over $\mathcal{M}_{g, n}$. Hence, it is natural to study the Hilbert polynomial $\operatorname{dim}\left(H^{0}\left(\mathcal{M}_{g, n}, \mathcal{O}\left(L^{k}\right)\right)\right)$ as a direct generalisation of the Verlinde formula of $\mathcal{M}_{g, 2}$ (cf. [3,16,17,19]), as well as the intersection theory of $\mathcal{M}_{g, n}$ (cf. [2,8,17,19]). We derive our results as in [7], by using the embedding of $\mathcal{M}_{g, n}$ in a homogeneous space.

In Section 2, we give the definition of $\mathcal{M}_{g, n}$ and find a K-theoretic decomposition of its holomorphic tangent bundle. In Section 3, we prove some vanishings and symmetries of

[^0]holomorphic Euler characteristics for virtual vector bundles and compute the Verlinde-type formula $\operatorname{dim}\left(H^{0}\left(\mathcal{M}_{g, n}, \mathcal{O}\left(L^{k}\right)\right)\right)$ as a determinant of a matrix whose entries are Verlinde dimensions themselves. From this formula, we determine the symplectic volume of $\mathcal{M}_{g, n}$. In Section 4, we generalise results from [6,7], by computing all the intersection numbers of a subring of $H^{*}\left(\mathcal{M}_{g, g-1}\right)$ generated by two quaternionic-related classes. Furthermore, we prove generalisations of the Newstead conjectures for $\mathcal{M}_{g, g-1}$ (cf. [11, Conjecture (a)-(c)]).

2. Moduli spaces

Let Σ_{g} be a hyperelliptic Riemann surface of genus g with involution $\iota: \Sigma \rightarrow \Sigma$ and Weierstrass points $\left\{\omega_{1}, \ldots, \omega_{2 g+2}\right\}$. Consider the special Clifford group $S C(2 n)=$ $\mathbb{C}^{*} \times_{\mathbb{Z}_{2}} \operatorname{Spin}(2 n)$, which fits into the following commutative diagram:

$$
\begin{array}{ccccccccc}
1 & \rightarrow & \mathbb{C}^{*} & \rightarrow & \operatorname{SC}(2 n) & \rightarrow & \operatorname{SO}(2 n) & \rightarrow & 1 \\
1 & & \uparrow & & \uparrow & & \| \\
\mathbb{Z}_{2} & \rightarrow & & \operatorname{Spin}(2 n) & \rightarrow & \operatorname{SO}(2 n) & \rightarrow & 1
\end{array}
$$

Let $\mathcal{M}_{g, n}$ denote the moduli space of semistable, holomorphic, rank $2 n$, vector bundles E over Σ_{g} with the following properties:

- E is an (orthogonal) vector bundle with structure group $S O(2 n)$ and with a lift of structure group to $S C(2 n)$.
- E is ι-invariant, i.e. there is a lift of ι to E (denoted by the same symbol) such that $E \cong \iota^{*} E$. Thus, we have the restrictions of ι to the fibres over the Weierstrass points $\iota: E_{\omega_{j}} \rightarrow E_{\omega_{j}}$ for all $j=1, \ldots, 2 g+2$. Since $\iota^{2}=1$, the eigenvalues of ι on these fibres are ± 1, and we denote the eigenspace by $E_{\omega_{j}}^{ \pm}$.
- E is such that $\operatorname{dim}\left((E \otimes \Lambda)_{\omega_{j}}^{-}\right)=1$ for all $j=1, \ldots, 2 g+2$, where Λ is an ι-invariant line bundle over Σ of degree $2 g-1$.

Example.

1. Case $n=1$. Since $S O(2) \cong U(1), \mathcal{M}_{g, 1}$ is the Jacobian $J(\Sigma)$ of Σ_{2} (cf. [12]).
2. Casen $=2$. The special Clifford group is

$$
S C(4)=\{(A, B) \in G l(2) \times G l(2) \mid \operatorname{det}(A) \cdot \operatorname{det}(B)=1\}
$$

and the homomorphism $S C(4) \rightarrow S O(4)$ is given by $(A, B) \rightarrow A \otimes B$. Thus, a $S C(4)$-bundle is essentially a pair of $G l(2)$-bundles M, N with $\operatorname{det}(M) \otimes \operatorname{det}(N)=1$, a trivial bundle. Since the Clifford group $C(4)$ does not distinguish between M and N, we have that $\mathcal{M}_{g, 2}$ is the moduli space of (stable) vector bundles of rank 2 and fixed odd determinant (cf. [12]).
Ramanan proved in [12, Theorem 3] that $\mathcal{M}_{g, n}$ is isomorphic to the variety of $(g+1-$ n)-dimensional subspaces of $\mathbb{C}^{2 g+2}$ which are isotropic with respect to the two quadratic forms:

$$
\begin{equation*}
\sum_{i=1}^{2 g+2} y_{i}^{2}, \quad \sum_{i=1}^{2 g+2} \omega_{i} y_{i}^{2} \tag{1}
\end{equation*}
$$

Therefore, we have a holomorphic embedding of $\mathcal{M}_{g, n}$ into the complex partial flag manifold

$$
\mathcal{F}_{g, n}=\frac{S O(2 g+2)}{U(g+1-n) \times S O(2 n)}
$$

which clearly parametrises the $(g+1-n)$-dimensional subspaces of $\mathbb{C}^{2 g+2}$ which are isotropic with respect to the first quadratic form. The flag manifold $\mathcal{F}_{g, n}$ is a twistor space for

$$
\mathcal{G}_{g, n}=\frac{S O(2 g+2)}{S O(2 g+2-2 n) \times S O(2 n)}
$$

since the fibre $S O(2 g+2-2 n) / U(g+1-n)$ parametrises orthogonal, almost-complex structures on the real oriented $(2 g+2-2 n)$-dimensional subspaces of $\mathbb{R}^{2 g+2}$, which are compatible with the orientation (cf. [1,14]).

Let Q, W denote the duals of the tautological complex vector bundles over $\mathcal{F}_{g, n}$ with fibres $\mathbb{C}^{g+1-n}, \mathbb{C}^{2 n}$ and structure groups $U(g+1-n), S O(2 n)$, respectively. The second quadratic form determines a holomorphic, non-degenerate section of the second symmetric tensor power $S^{2} Q$ of Q, whose zero-set is precisely $\mathcal{M}_{g, n}$. Thus, we know that $\mathcal{M}_{g, n}$ is a smooth complex manifold of complex dimension $(2 n-1)(g+1-n)$.

The splitting of the standard representation of $S O(2 g+2)$ on $\mathbb{C}^{2 g+2}$ under $U(g+1-$ $n) \times S O(2 n)$ yields

$$
\begin{equation*}
Q^{*} \oplus Q \oplus W=2 g+2 \tag{2}
\end{equation*}
$$

This implies that

$$
\mathfrak{s o}(2 g+2)_{c} \cong(\mathfrak{u}(g+1-n) \oplus \mathfrak{s o}(2 n))_{c} \oplus\left(\wedge^{2} Q \oplus Q \otimes W\right) \oplus \overline{\left(\wedge^{2} Q \oplus Q \otimes W\right)}
$$

where $\wedge^{2} Q \oplus Q \otimes W$ corresponds to the holomorphic tangent bundle $T^{1,0} \mathcal{F}_{g, n}$ of $\mathcal{F}_{g, n}$. Here $\wedge^{2} Q$ is the holomorphic tangent bundle to the Hermitian fibres $S O(2 g+2-2 n) / U(g+1-n)$ of $\mathcal{F}_{g, n} \rightarrow \mathcal{G}_{g, n}$ and its complement $Q \otimes W$ is a holomorphic horizontal bundle (cf. [1]).

On the other hand,

$$
\left.T^{1,0} \mathcal{F}_{g, n}\right|_{\mathcal{M}_{g, n}}=\left.T^{1,0} \mathcal{M}_{g, n} \oplus S^{2} Q\right|_{\mathcal{M}_{g, n}}
$$

so that

$$
T=T^{1,0} \mathcal{M}_{g, n}=\wedge^{2} Q \oplus Q \otimes W-S^{2} Q
$$

where we are denoting bundles and their pull-backs by the same symbols.

Lemma 2.1.

$$
T=Q \otimes W-\psi^{2} Q
$$

where $\psi^{2}=S^{2}-\wedge^{2}$ in K-theory.

The operator ψ^{2} is one of the series of Adams operators, defined by the formula

$$
\sum_{p \geq 0}\left(\psi^{p} E\right) t^{p}=r-t \frac{\mathrm{~d}}{\mathrm{~d} t} \log \Lambda_{-t} E
$$

where $E \in K(\mathcal{M})$ has virtual rank r and $\Lambda_{t} E=\sum_{i \geq 0}\left(\wedge^{i} E\right) t^{i}$ [4]. Each ψ^{p} is a ring homomorphism in K-theory, and is characterized by the property that

$$
\begin{equation*}
\operatorname{ch}_{k}\left(\psi^{p} E\right)=p^{k} \operatorname{ch}_{k}(E) \tag{3}
\end{equation*}
$$

where $\operatorname{ch}_{k}(E)$ denotes the term of dimension $2 k$ in the Chern character. We can readily see that

$$
\begin{equation*}
c_{1}(T)=2(n-1) c_{1}(L) \tag{4}
\end{equation*}
$$

since $L=\operatorname{det}(Q)$ on \mathcal{F}. Note that L is a positive line bundle on $\mathcal{F}_{g, n}$ and, therefore, also on $\mathcal{M}_{g, n}$.

Since $Q^{*}+Q=2 g+2-W$ is a genuine complex vector bundle of rank $2(g+1-n)$ with total Chern class $c(W)^{-1}$, we obtain relations in the cohomology ring for dimension greater than $2(g+1-n)$.

3. Character calculations

Let $h=g+1-n$ and consider the holomorphic Euler characteristics

$$
\begin{equation*}
V_{h, n}(p, q, r)=\chi\left(\mathcal{M}_{g, n}, \mathcal{O}\left(\psi^{p-q} Q \otimes L^{q-(n-1)} \otimes \psi^{r} W\right)\right) \tag{5}
\end{equation*}
$$

Let $w=x+x^{-1}-2$ and

$$
\begin{equation*}
F(w, p)=\frac{\left(x^{p}-x^{-p}\right)\left(x-x^{-1}\right)}{x+x^{-1}-2}=\sum_{h \geq 0}\left(4\binom{p+h}{2 h+1}+\binom{p+h-1}{2 h-1}\right) w^{h} \tag{6}
\end{equation*}
$$

Let $G(w, p)$ be such that $G(w, p) F(w, p)=1$, i.e.

$$
G(w, p)=\sum_{m=0}^{\infty}(-1)^{m} G_{m}(p) w^{m}=\sum_{m=0}^{\infty} \frac{(-1)^{m} P_{m}(p)}{(4 p)^{m+1} w^{m}}
$$

where

$$
P_{m}(p)= \begin{cases}\sum_{j=1}^{2 p-1}(-1)^{j+1}\left(\frac{p}{\sin ^{2}(j \pi / 2 p)}\right)^{m}, & m \geq 0 \\ 0, & m<0\end{cases}
$$

Theorem 3.1.

$$
\begin{aligned}
& V_{h, n}(0, q, r)=0, \quad V_{h, n}(p, 0, r)=0 \\
& V_{h, n}(p, q, r)=(-1)^{h} V_{h, n}(-p,-q, r), \quad V_{h, n}(p, q, r)=-V_{h, n}(-p, q, r),
\end{aligned}
$$

$$
V_{h, n}(q, q, 0)=\frac{2 n h}{(4 q)^{(h+1)(n-1)-g}}\left|\begin{array}{cccc}
P_{h}(q) & P_{h+1}(q) & \cdots & P_{h+n-2}(q) \\
\vdots & \vdots & & \vdots \\
P_{h-n+2}(q) & P_{h-n+3}(q) & \cdots & P_{h}(q)
\end{array}\right|
$$

Remark.

$$
\chi\left(\mathcal{M}_{g, n}, \mathcal{O}\left(L^{q-(n-1)}\right)\right)=\operatorname{dim} H^{0}\left(\mathcal{M}_{g, n}, \mathcal{O}\left(L^{q-(n-1)}\right)\right)
$$

by Kodaira vanishing theorem since L is a positive line bundle on $\mathcal{M}_{g, n}$, Eq. (4) and Serre duality. Thus,

$$
\operatorname{dim} H^{0}\left(\mathcal{M}_{g, n}, \mathcal{O}\left(L^{q-(n-1)}\right)\right)=\frac{V_{h, n}(q, q, 0)}{2 n h}
$$

constitutes our Verlinde-type formula.

Remark. Note that $V_{h, 2}(q, q, 0) / 4 h=P_{h}(q)$ is the original Verlinde formula

$$
P_{h}(q)=\operatorname{dim}\left(H^{0}\left(\mathcal{M}_{g, 2}, \mathcal{O}\left(L^{q-1}\right)\right)\right)
$$

$V_{h, n}(q, q, 0)$ is the determinant of a matrix whose entries are Verlinde dimensions themselves, and the classic result

$$
\frac{V_{h, 1}(q, q, 0)}{2 h}=\operatorname{dim}\left(H^{0}\left(T J(\Sigma), \mathcal{O}\left(L^{q}\right)\right)\right)=(4 q)^{g}
$$

Remark. The second line in Theorem 3.1 represents the symmetries of $V_{h, n}(p, q, r)$.
Proof. Let $\sigma^{*}=S^{2} Q$ and $m=\operatorname{rk}\left(S^{2} Q\right)$. We shall use the Koszul complex

$$
\begin{align*}
0 & \rightarrow \mathcal{O}_{\mathcal{F}}\left(\wedge^{m} \sigma \otimes V\right) \rightarrow \mathcal{O}_{\mathcal{F}}\left(\wedge^{m-1} \sigma \otimes V\right) \rightarrow \cdots \rightarrow \mathcal{O}_{\mathcal{F}}(\sigma \otimes V) \\
& \rightarrow \mathcal{O}_{\mathcal{F}}(V) \rightarrow \mathcal{O}_{\mathcal{M}}(V) \rightarrow 0 \tag{7}
\end{align*}
$$

and the Atiyah-Bott fixed point theorem, where V is any virtual bundle over $\mathcal{F}_{g, n}$.
Recall that, on a homogeneous space, holomorphic Euler characteristics can be computed by means of the Atiyah-Bott fixed point formula. Let G be a reductive Lie group, P a parabolic subgroup of G, and $F=G / P$ the corresponding flag manifold. A representation R of P determines both a holomorphic vector bundle $\underline{R}=G \times{ }_{P} R$ over F and a virtual G-module

$$
\mathcal{I}_{R}=\sum_{i}(-1)^{i} H^{i}(F, \mathcal{O}(\underline{R}))
$$

Let \mathbb{T} be a common maximal torus of P and G, let W_{G}, and W_{P} be the Weyl groups, and W_{r} the relative Weyl group. The character of the G-module \mathcal{I}_{R} is given by

$$
\begin{equation*}
\operatorname{tr}\left(\mathcal{I}_{R}\right)=\sum_{w \in W_{\mathrm{r}}} w \cdot \frac{\operatorname{tr}(R)}{\operatorname{tr}\left(\Lambda_{-1} A^{*}\right)} \tag{8}
\end{equation*}
$$

where A is the P-module associated to the holomorphic tangent bundle $T^{1,0} \mathcal{F}=\underline{A}$. Evaluation at the identity element of \mathbb{T} yields

$$
\left.\operatorname{tr}\left(\mathcal{I}_{R}\right)\right|_{e}=\chi(F, \mathcal{O}(\underline{R}))
$$

Let B_{1} and B_{2} denote the fundamental representations of $U(h)$ and $S O(2 n)$, respectively. The vector bundles $Q, \operatorname{det}(Q)$ and W over $\mathcal{F}=S O(2 g+2) /(U(h) \times S O(2 n))$ pull back to Q, L and W over $\mathcal{M}_{g, n}$, respectively. From the complex (7)

$$
\chi\left(\mathcal{M}_{g, n}, \mathcal{O}\left(\psi^{p-q} Q \otimes \psi^{r} W \otimes L^{q-(n-1)}\right)\right)=\chi\left(\mathcal{F}, \mathcal{O}\left(\underline{E}^{p, q, r}\right)\right)
$$

where

$$
E^{p, q, r}=\psi^{p-q} B_{1}^{*} \otimes \psi^{r} B_{2} \otimes\left(\operatorname{det} B_{1}^{*}\right)^{q-(n-1)} \otimes \Lambda_{-1}\left(S^{2} B\right)
$$

We shall now proceed to calculate (8). Let x_{1}, \ldots, x_{g+1} be the characters of the maximal torus of $\operatorname{SO}(2 g+2)$ corresponding to the polarisation $\left\{y_{2 j-1}+i y_{2 j}: 1 \leq j \leq g+1\right\}$ of $\mathbb{C}^{2 g+2}$. The character of the fundamental $S O(2 g+2)$-module is $\sum_{j=1}^{h+n}\left(x_{j}+x_{j}^{-1}\right)$, that of the fundamental $S O(2 n)$-module is $\sum_{j=1}^{n}\left(x_{j+h}+x_{j+h}^{-1}\right)$, and that of the fundamental $U(h)$-module is $\sum_{j=1}^{h} x_{j}^{-1}$. Thus,

$$
\operatorname{tr}\left(E^{p, q, r}\right)=\prod_{i \leq h} x_{i}^{q-(n-1)} \prod_{1 \leq j \leq k \leq h}\left(1-\frac{1}{x_{j} x_{k}}\right)\left(\sum_{\ell=1}^{h} x_{\ell}^{p-q}\right)\left(\sum_{m=1}^{n} x_{m}^{r}+x_{m}^{-r}\right)
$$

and

$$
\operatorname{tr}\left(\Lambda_{-1} A^{*}\right)=\prod_{1 \leq i<j \leq h}\left(1-\frac{1}{x_{i} x_{j}}\right) \prod_{\substack{1 \leq k \leq h \\ \varepsilon=1, \ldots, n}}\left(1-\frac{1}{x_{h+\varepsilon} x_{k}}\right)\left(1-\frac{x_{h+\varepsilon}}{x_{k}}\right)
$$

Thus, we need to compute

$$
\begin{equation*}
\sum_{w \in W_{\mathrm{r}}} w \cdot \frac{\operatorname{tr}\left(E^{p, q, r}\right)}{\operatorname{tr}\left(\Lambda_{-1} A^{*}\right)} \tag{9}
\end{equation*}
$$

We have

$$
\begin{aligned}
\frac{\operatorname{tr}\left(E^{p, q, r}\right)}{\operatorname{tr}\left(\Lambda_{-1} A^{*}\right)}= & \left(\prod_{i \leq h} \frac{x_{i}^{q-(n-1)}\left(1-x_{i}^{-2}\right)}{\prod_{\varepsilon=1, \ldots, n}\left(1-\left(1 / x_{h+\varepsilon} x_{k}\right)\right)\left(1-\left(x_{h+\varepsilon} / x_{k}\right)\right)}\right) \\
& \times\left(\sum_{j \leq h} x_{j}^{p-q}\right)\left(\sum_{j=1}^{n} x_{j}^{r}+x_{j}^{-r}\right)
\end{aligned}
$$

Using the identity

$$
\left(1-\frac{1}{y x}\right)\left(1-\frac{y}{x}\right)=\frac{1}{x}\left(x+\frac{1}{x}-\left(y+\frac{1}{y}\right)\right)
$$

$$
\begin{aligned}
\frac{\operatorname{tr}\left(E^{p, q, r}\right)}{\operatorname{tr}\left(\Lambda_{-1} A^{*}\right)}= & \left(\prod_{i \leq h} \frac{x_{i}^{q}\left(x_{i}-x_{i}^{-1}\right)}{\prod_{\varepsilon=1, \ldots, h}\left(x_{i}+x_{i}^{-1}-x_{h+\varepsilon}-x_{h+\varepsilon}^{-1}\right)}\right) \\
& \times\left(\sum_{j \leq h} x_{j}^{p-q}\right)\left(\sum_{j=1}^{n} x_{j}^{r}+x_{j}^{-r}\right)
\end{aligned}
$$

In order to perform the summation in (8), recall the form of the relative Weyl group W_{r} of $W_{S O(2 g+2)}$ with respect to $W_{U(h)}$ and $W_{S O(2 n)}$. Firstly,

$$
W_{S O(2 g+2)}=W_{2 g+2}^{\text {signs }} \rtimes W_{g+1}^{\text {perms }},
$$

where $W^{\text {signs }}$ consists of substitutions $x_{i} \mapsto x_{i}^{-1}$ of an even number of variables from $\left\{x_{1}, \ldots, x_{g+1}\right\}$, and $W^{\text {perms }}$ is the group of permutations of the $g+1$ weights x_{1}, \ldots, x_{g+1}. Secondly,

$$
W_{S O(2 n)}=W_{2 n}^{\text {signs }} \rtimes W_{n}^{\text {perms }},
$$

where $W^{\text {signs }}$ consists of substitutions $x_{i} \mapsto x_{i}^{-1}$ of an even number of variables from $\left\{x_{g+2-n}, \ldots, x_{g+1}\right\}$, and $W^{\text {perms }}$ is the group of permutations of the n weights x_{g+2-n}, \ldots, x_{g+1}. Thirdly,

$$
W_{U(g+1-n)}=W_{g+1-n}^{\text {perms }},
$$

where $W^{\text {perms }}$ is the group of permutations of the $(g+1-n)$ weights x_{1}, \ldots, x_{g+1-n}.
Thus,

$$
W_{\mathrm{r}}=W^{\text {signs }} \rtimes W^{\text {perms }}
$$

and it has $2^{h}\binom{h+2}{2}$ elements, where $W^{\text {signs }}$ consists of all the substitutions $x_{i} \mapsto x_{i}^{-1}$ of an even number of variables modulo $\left\{x_{h+1} \mapsto x_{h+1}^{-1}, \ldots, x_{h+n} \mapsto x_{h+n}^{-1}\right\}$, and $W^{\text {perms }}$ consists of all the cycles which permute elements of the two disjoint sets $\left\{x_{1}, \ldots, x_{g+1-n}\right\}$ and $\left\{x_{g+2-n}, \ldots, x_{g+1}\right\}$, and their products modulo the $W_{g+1-n}^{\text {perms }}$ and $W_{n}^{\text {perms }}$.

Adding first with respect to $W^{\text {signs }}$ we have

$$
\begin{align*}
& \left(\prod_{i \leq h} \frac{\left(x_{i}-x_{i}^{-1}\right)}{\prod_{1 \leq \varepsilon \leq n}\left(x_{i}+x_{i}^{-1}-x_{h+\varepsilon}-x_{h+\varepsilon}^{-1}\right)}\right)\left(\sum_{j \leq h}\left(x_{j}^{p}-x_{j}^{-p}\right) \prod_{l \neq j}\left(x_{j}^{q}-x_{j}^{-q}\right)\right) \\
& \times\left(\sum_{m=1}^{n} x_{m+h}^{r}+x_{m+h}^{-r}\right) \tag{10}
\end{align*}
$$

from which we immediately see that the holomorphic Euler characteristic vanishes if $p=0$ or $q=0$, yielding the first four identities of the theorem.

In order to prove the second part of the theorem, let $p=q, r=0$. From (10) we have the expression

$$
2 n h \prod_{i \leq h} \frac{\left(x_{i}-x_{i}^{-1}\right)\left(x_{i}^{q}-x_{i}^{-q}\right)}{\prod_{1 \leq \varepsilon \leq n}\left(x_{i}+x_{i}^{-1}-x_{h+\varepsilon}-x_{h+\varepsilon}^{-1}\right)} .
$$

We can set one of the variables to 1 , for example $x_{g+1} \rightarrow 1$, and adding with respect to $W^{\text {perms }}$ gives

$$
2 n h \frac{\prod_{i=1}^{g} F\left(w_{i}, q\right)}{\operatorname{Vm}\left(w_{1}, \ldots, w_{g}\right)} \sum_{\sharp I=n-1} \frac{(-1)^{|I|+n(n-1) / 2} \operatorname{Vm}\left(w_{I}\right) \operatorname{Vm}\left(w_{\hat{I}}\right)}{\prod_{i_{j} \in I} F\left(w_{i_{j}}, q\right)},
$$

where $I=\left(i_{1}, \ldots, i_{n-1}\right)$ is a multi-index with $1 \leq i_{1}<\cdots<i_{n-1} \leq g,|I|=i_{1}+\cdots+$ i_{n-1}, \hat{I} denotes its complement in $\{1,2, \ldots, q\}$, and Vm is the Vandermonde determinant in the given variables w_{i}. The last expression equals

$$
\left.2 n h \prod_{i=1}^{g} F\left(w_{i}, q\right) \frac{\left\lvert\, \begin{array}{ccccccc}
G\left(w_{1}, q\right) & w_{1} G\left(w_{1}, q\right) & \cdots & w_{1}^{n-2} G\left(w_{1}, q\right) & 1 & w_{1} & \cdots \\
\vdots & \vdots & w_{1}^{h-1} \\
G\left(w_{g}, q\right) & w_{g} G\left(w_{g}, q\right) & \cdots & w_{g}^{n-2} G\left(w_{g}, q\right) & 1 & w_{g} & \cdots
\end{array} w_{g}^{h-1}\right.}{} \right\rvert\,
$$

whose limit when $\left\{w_{i} \rightarrow 0\right\}$ is

$$
2 n h(4 q)^{g}\left|\begin{array}{cccc}
G_{h}(q) & G_{h+1}(q) & \cdots & G_{h+n-2}(q) \\
\vdots & \vdots & & \vdots \\
G_{h-n+2}(q) & G_{h-n+3}(q) & \cdots & G_{h}(q)
\end{array}\right|
$$

Let

$$
\frac{x}{\sinh (x)}=\sum_{i=0}^{\infty} C_{2 i} x^{2 i}
$$

where

$$
C_{2 i}=\frac{1}{(2 i)!} 2^{2 i}\left(2^{2 i}-2\right) B_{2 i}
$$

and $B_{2 i}$ are the Bernoulli numbers. Recall that $P_{h}(q)$ is the coefficient of $x^{3 h}$ in

$$
(-q x)^{h}\left(\frac{x}{\sinh (x)}\right)^{2 h}\left(\frac{2 q x}{\sinh (2 q x)}\right)
$$

(cf. [17]), so that the coefficient of $q^{3 h}$ in $P_{h}(q)$ is $C_{2 h}$. The top power of q in $(1 / 2 h n) \times$ $V_{h, n}(q, q, 0), q^{(2 n-1)(g+1-n)}$, has coefficient

$$
\left\langle\frac{c_{1}(L)^{(2 n-1)(g+1-n)}}{((2 n-1)(g+1-n))!},\left[\mathcal{M}_{g, n}\right]\right\rangle,
$$

which is given by a sum of products of all the leading coefficients of all the entries in the determinant in Theorem 3.1.

Proposition 3.1. The symplectic volume of $\mathcal{M}_{g, n}$ for a symplectic form representing the cohomology class of $c_{1}(L)$ is

$$
\mathrm{v}\left(\mathcal{M}_{g, n}\right)=\frac{1}{4^{(h+1)(n-1)-g}}\left|\begin{array}{cccc}
C_{2 h} & C_{2 h+2} & \cdots & C_{2 h+2 n-4} \\
\vdots & \vdots & & \vdots \\
C_{2 h-2 n+4} & C_{2 h-2 n+6} & \cdots & C_{2 h}
\end{array}\right|
$$

4. Intersection numbers on $\mathcal{M}_{g, g-1}$

In this section, we shall restrict ourselves to the case $n=g-1$ for $g \geq 2$, in which the real Grassmannians $\mathcal{G}_{g}=\mathcal{G}_{g, g-1}$ are quaternionic Kähler manifolds [13,18].

4.1. Cohomology of the real Grassmannian

Let $\mathcal{G}_{g}=\mathcal{G}_{g, g-1}$ be the real Grassmannian $(g \geq 2)$

$$
\mathcal{G}_{g}=\frac{S O(2 g+2)}{S O(4) S O(2 g-2)}
$$

parametrising real oriented four-dimensional subspaces of $\mathbb{R}^{2 g+2}$. The isotropy group is contained in $S p(2 g-2) S p(1)$ making \mathcal{G}_{g} into a quaternion-Kähler manifold [13,18]. Let \hat{W} be the (complexified) tautological $S O(4)$-bundle over \mathcal{G}_{g} and \hat{W}^{\perp} be its orthogonal complement in the trivial bundle with fibre $\mathbb{R}^{2 g+2}$. Note that $\left(\hat{W}^{\perp}\right)_{\mathrm{c}}$ coincides with W of Section 2. The tangent bundle of \mathcal{G}_{g} factors as

$$
T \mathcal{G}_{g}=\hat{W} \otimes \hat{W}^{\perp}
$$

Since $S O(4) \cong S p(1) S p(1) \cong S U(2) S U(2)$,

$$
\hat{W}_{\mathrm{c}}=U \otimes_{\mathrm{c}} V
$$

where U, V are two copies of the fundamental representation of $S U(2)$, and the subscript c denotes complexification.

Thus,

$$
\left(T \mathcal{G}_{g}\right)_{\mathrm{c}}=U \otimes(V \otimes W)
$$

where U may be considered as a quaternionic line bundle and $V \otimes W$ as the complementary quaternionic bundle for $\operatorname{Sp}(2 g-2)$.

We shall consider the ring generated by the following classes

$$
u=-c_{2}(U) \in H^{4}\left(\mathcal{G}_{g}\right), \quad v=-c_{2}(V) \in H^{4}\left(\mathcal{G}_{g}\right)
$$

Although u and v are not integral classes, their multiples $4 u, 4 v$ are integral since the vector bundles $S^{2} U, S^{2} V$ are globally defined, where S^{2} denotes the second symmetric tensor power of the corresponding representation or bundle. Suppose that $4 u=l^{2}$ and $4 v=\hat{l}^{2}$, so that

$$
\begin{aligned}
& \operatorname{ch}(U)=\mathrm{e}^{l / 2}+\mathrm{e}^{-l / 2}=2+u+\frac{1}{12} u^{2}+\frac{1}{360} u^{3}+\frac{1}{20160} u^{4}+\cdots, \\
& \operatorname{ch}(V)=\mathrm{e}^{\hat{l} / 2}+\mathrm{e}^{-\hat{l} / 2}=2+v+\frac{1}{12} v^{2}+\frac{1}{360} v^{3}+\frac{1}{20160} v^{4}+\cdots
\end{aligned}
$$

Later in the note, we shall need the following corollary to the Clebsh-Gordan formula, which is readily proved by induction.

Lemma 4.1. Let $H \cong \mathbb{C}^{2}$ be the standard representation of $S p(1)=S U(2)$. Let $S^{n} H$ denote the nth symmetric tensor power of H. The tensor powers of the virtual representation $S^{2} H-3$, where 3 denotes a trivial representation of dimension 3 , satisfy

$$
\left(S^{2} H-3\right)^{\otimes m}=\sum_{j=0}^{m}\binom{2 m+1}{j} S^{2(m-j)} H
$$

We know that \mathcal{G}_{g} is a spin manifold [13], and therefore there is a Dirac operator D acting on sections of the spin bundle Δ. Let $E=V \otimes W$. Thus Δ decomposes as $\Delta_{+} \oplus_{-} \Delta_{-}$, where

$$
\begin{aligned}
& \Delta_{+}=S^{2 g-2} U \oplus S^{2 g-4} U \otimes \wedge_{0}^{2} E \oplus \cdots \oplus \wedge_{0}^{2 g-2} E \\
& \Delta_{-}=S^{2 g-3} U \otimes E \oplus S^{2 g-5} U \otimes \wedge_{0}^{3} E \oplus \cdots \oplus U \otimes \wedge_{0}^{2 g-3} E
\end{aligned}
$$

over \mathcal{G}_{g}. If F is a vector bundle over \mathcal{G}_{g} equipped with a connection, one can extend the Dirac operator D to an elliptic operator with coefficients in F

$$
D(F): \Gamma\left(\Delta_{+} \otimes F\right) \rightarrow \Gamma\left(\Delta_{-} \otimes F\right)
$$

whose index is by definition $\operatorname{ind}(D(F))=\operatorname{dim}(\operatorname{ker} D(F))-\operatorname{dim}(\operatorname{coker} D(F))$.
Note that

$$
\left\langle u^{i} v^{j},\left[\mathcal{G}_{g}\right]\right\rangle=\left\langle u^{j} v^{i},\left[\mathcal{G}_{g}\right]\right\rangle
$$

due to the symmetry between the bundles U and V. We define the quaternionic volume of \mathcal{G}_{g} to be

$$
\mathrm{v}\left(\mathcal{G}_{g}\right)=\left\langle(4 u)^{2 g-2},\left[\mathcal{G}_{g}\right]\right\rangle=\left\langle(4 v)^{2 g-2},\left[\mathcal{G}_{g}\right]\right\rangle
$$

In order to compute the numbers $\left\langle u^{i} v^{j},\left[\mathcal{G}_{g}\right]\right\rangle$, we need to compute the following indices.
Proposition 4.1. Let $f_{j}(k)=\operatorname{ind}\left(D\left(S^{2 g-2+2 k} U \otimes S^{2 j} V\right)\right)$. Then

$$
\begin{aligned}
f_{j}(k)= & \frac{(2 j+1)(2 g+2 k-1)(g+k+j)(g+k-1-j)}{g(g-1)(2 g-1)(2 g-2)} \\
& \times\binom{ 2 g+k+j-2}{2 g-3}\binom{2 g+k-j-3}{2 g-3} .
\end{aligned}
$$

Proof. First, by twistor transform [10,13],

$$
\operatorname{ind}\left(D\left(S^{2 g-2+2 k} U \otimes S^{2 j} V\right)\right)=\chi\left(\mathcal{F}_{g}, \mathcal{O}\left(S^{2 j} V \otimes L^{k}\right)\right)
$$

where $\mathcal{F}_{g}=\mathcal{F}_{g, g-1}$. Thus, we apply the Borel-Weil-Bott theorem.
Let $V(\gamma)$ denote the complex irreducible representation of $S O(2 g+2)$ with dominant weight γ, where $\gamma=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{g+1}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{g+1} \geq 0$. For example, $V(1,0, \ldots, 0)=\mathbb{C}^{2 g+2}$ is the fundamental representation of $S O(2 g+2)$ and $V(1,1,0, \ldots, 0)=\wedge^{2} \mathbb{C}^{2 g+2}=\mathfrak{s o}(2 g+2, \mathbb{C})$ is the complexified adjoint representation.

Observe that Q corresponds to the fundamental representation $(1,0)$ of $U(2)$, so that $L=\operatorname{det}(Q)$ and $S^{2} Q$ correspond to the weights $(1,1)$ and $(2,0)$, respectively. Thus, $S^{2} V=S^{2} Q \otimes L^{-1}$ corresponds to $(1,-1)$. By embedding the maximal torus of $U(2)$ into the one of $S O(2 g+2)$ in the obvious way, we see that the virtual representation

$$
\sum_{r=0}^{4(g-1)+1} H^{r}\left(\mathcal{F}_{g}, \mathcal{O}\left(S^{2 j} V \otimes L^{k}\right)\right) \cong V(k+j, k-j, 0, \ldots, 0)
$$

and consequently,

$$
\chi\left(\mathcal{F}_{g}, \mathcal{O}\left(S^{2 j} V \otimes L^{k}\right)\right)=\operatorname{dim} V(k+j, k-j, 0, \ldots, 0)
$$

The latter is easily computed by using the Weyl dimension formula

$$
\operatorname{dim} V(\gamma)=\prod_{\alpha \in R_{+}} \frac{\langle\alpha, \delta+\gamma\rangle}{\langle\alpha, \delta\rangle}
$$

where R_{+}denotes the positive roots of $S O(2 g+2)$:

$$
R_{+}=\left\{\mathrm{e}_{i} \pm \mathrm{e}_{j}, i<j\right\}
$$

where $\left\{\mathrm{e}_{i}\right\}$ is the canonical basis of $\mathbb{R}^{2 g+2}$, and $\delta=(g, g-1, g-2, \ldots, 1,0)$.
Proposition 4.2. Evaluation on the fundamental class $\left[\mathcal{G}_{g}\right]$ yields

$$
\mathrm{v}\left(\mathcal{G}_{g}\right)=\frac{2}{g}\binom{4 g-3}{2 g-1}
$$

and more generally,

$$
\left\langle 4^{2 g-2} u^{2 g-2-j} v^{j},\left[\mathcal{G}_{g}\right]\right\rangle=(-1)^{j}(4 g-2 j-3)\binom{2 g-2}{j}\binom{4 g-3}{2 j+1}^{-1} \mathrm{v}\left(\mathcal{G}_{g}\right)
$$

Proof. Observe that the index

$$
\begin{aligned}
\chi\left(\mathcal{F}_{g}, \mathcal{O}\left(L^{k} \otimes\left(S^{2} V-3\right)^{\otimes j}\right)\right) & =\left\langle\mathrm{e}^{l k}\left(\operatorname{ch}\left(S^{2} V-3\right)\right)^{j} \operatorname{td}\left(\mathcal{F}_{g}\right),\left[\mathcal{F}_{g}\right]\right\rangle \\
& =\sum_{i=0}^{j}(-1)^{i}\binom{2 j+1}{i} f_{j-i}(k)
\end{aligned}
$$

by the Atiyah-Singer index theorem and Lemma 4.1. This is a polynomial in k for each j, which we denote by $h_{j}(k)$. Furthermore,

$$
\begin{aligned}
h_{j}(k)= & (-1)^{j} \frac{(2 j+1)!(2 g-2 j-4)!(2 g+2 k-1)}{j!g(2 g-1)(2 g-2-j)!} \\
& \times\left(2 g^{2}+4 g k-(j+2) g-2 k+2 k^{2}\right)\binom{2 g+k-j-3}{2 g-2 j-4}\binom{2 g-2+k}{2 g-2}
\end{aligned}
$$

and has degree $4 g-3-2 j$. Its leading term is, on the one hand,

$$
\frac{2 k^{4 g-3-2 j}}{(4 g-3-2 j)!}\left\langle 4^{2 g-2} u^{2 g-2-j} v^{j},\left[\mathcal{G}_{g}\right]\right\rangle
$$

since the lowest-dimensional component of $\operatorname{ch}\left(\left(S^{2} V-3\right)^{\otimes n}\right)$ is v^{n}. On the other hand, the leading term is equal to

$$
(-1)^{j} \frac{4(2 j+1)!k^{4 g-3-2 j}}{j!g(2 g-1)!(2 g-2-j)!}
$$

Note that we have only missed the intersection numbers involving the extra cohomology class of $\mathcal{G} g$ which appears in dimension $2 g-2$.

4.2. Intersection numbers on $\mathcal{M}_{g, g-1}$

The complex manifold $\mathcal{F}_{g}=\mathcal{F}_{g, g-1}$ has complex dimension $4 g-3$, and parametrises complex two-dimensional subspaces Π of $\mathbb{C}^{2 g+2}$ which are isotropic with respect to the standard $S O(2 g+2)$-invariant bilinear form. It is a contact Kähler-Einstein manifold [10], which projects onto $\mathcal{G}_{g}, \pi: \mathcal{F}_{g} \rightarrow \mathcal{G}_{g}$, by sending Π to the four-dimensional subspace of $\mathbb{R}^{2 g+2}$ whose complexification is $\Pi \oplus \bar{\Pi}$. Each fibre is isomorphic to a rational curve $S O(4) / U(2) \cong \mathbb{C P}^{1}$ in \mathcal{F}_{g}.

The Picard group $\operatorname{Pic}\left(\mathcal{F}_{g}\right)$ is generated by a line bundle $L \rightarrow \mathcal{F}_{g}$ such that [10]

1. $\left.L\right|_{\pi^{-1}(x)}=\mathcal{O}(2)$ on $\pi^{-1}(x) \cong \mathbb{C P}$.
2. $L^{2 g-1}$ is isomorphic to the anticanonical bundle $K_{\mathcal{F}}^{-1}$ of \mathcal{F}_{g}.
3. If Q denotes the dual of the tautological $U(2)$-bundle over $\mathcal{F}_{g}, L=\operatorname{det}(Q)$.

Theorem 4.1. The intersection numbers $\left\langle u^{i} v^{j},\left[\mathcal{M}_{g, g-1}\right]\right\rangle$, where $i+j=4 g-6$, are skew-symmetric in u and v. Evaluating on the fundamental class $\left[\mathcal{M}_{g, g-1}\right]$ yields

$$
\left\langle u^{2 g-3-j} v^{j},\left[\mathcal{M}_{g, g-1}\right]\right\rangle=\frac{(-1)^{j}}{4^{2 g-5}}\binom{2 g-2}{j}\binom{4 g-3}{2 j+1}^{-1}\binom{4 g-3}{2 g-1}
$$

Proof. As a ($4 g-6$)-dimensional submanifold of $\mathcal{F}_{g}, \mathcal{M}_{g, g-1}$ is Poincaré dual to the Euler class $c_{3}\left(S^{2} Q\right)$, which is easily computed from the identity $S^{2} Q=L \otimes \pi^{*} S^{2} V$ and is equal
to $4 l(u-v)$. Hence,

$$
\begin{aligned}
\left\langle u^{2 g-3-j} v^{j},\left[\mathcal{M}_{g, g-1}\right]\right\rangle & =\left\langle 4 l u^{2 g-3-j} v^{j}(u-v),\left[\mathcal{F}_{g}\right]\right\rangle \\
& =8\left\langle u^{2 g-2-j} v^{j}-u^{2 g-3-j} v^{j+1},\left[\mathcal{G}_{g}\right]\right\rangle \\
& =\frac{(-1)^{j}}{4^{2 g-5}}\binom{2 g-2}{j}\binom{4 g-3}{2 j+1}^{-1}\binom{4 g-3}{2 g-1}
\end{aligned}
$$

where the second equality follows from twistor transform.

4.3. Tangent relations and Newstead-type vanishings

The holomorphic tangent bundle of \mathcal{F}_{g} satisfies

$$
T^{1,0} \mathcal{F}_{g}=Q \otimes W \oplus \wedge^{2} Q=Q \otimes W \oplus L
$$

as in Section 2.
There is a local C^{∞} isomorphism

$$
\pi^{*} U=L^{1 / 2} \oplus L^{-1 / 2}
$$

so that $l=c_{1}(L) \in H^{2}\left(\mathcal{F}_{g}, \mathbb{Z}\right)$, and by the Leray-Hirsch theorem

$$
\left(\frac{l}{2}\right)^{2}+\pi^{*} c_{2}(U)=0
$$

i.e. $l^{2}=4 u$ (omitting π^{*}).

From Lemma 2.1,

$$
T^{1,0} \mathcal{M}_{g, g-1}=Q \otimes W-\psi^{2} Q=(2 g+2) V \otimes L^{1 / 2}-2 \psi^{2} V \otimes L-2 L-\psi^{2} V-2
$$

where we have omitted π^{*} and ψ^{2} denotes the second Adams operator on vector bundles [4]. As in [6],

$$
\begin{equation*}
c\left(\mathcal{M}_{g, g-1}\right)=\frac{((1+l / 2+\hat{l} / 2)(1+l / 2-\hat{l} / 2))^{2 g+2}}{(1+l+\hat{l})^{2}(1+l-\hat{l})^{2}(1+l)^{2}\left(1-\hat{l}^{2}\right)} \tag{11}
\end{equation*}
$$

where \hat{l} is defined formally to be $2 \sqrt{v}$ (we also denote by u and v the pull-backs to $\mathcal{M}_{g, g-1}$ of the quaternionic classes on \mathcal{G}_{g}). Thus,

$$
\begin{equation*}
p\left(\mathcal{M}_{g, g-1}\right)=\frac{\left(1+2(u+v)+(u-v)^{2}\right)^{2 g+2}}{(1+4 u)^{2}(1+4 v)^{2}\left(1+8(u+v)+16(u-v)^{2}\right)^{2}} \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
\hat{A}\left(\mathcal{M}_{g, g-1}\right)= & \left(\frac{\sqrt{u}+\sqrt{v}}{\sinh (\sqrt{u}+\sqrt{v})} \frac{\sqrt{u}-\sqrt{v}}{\sinh (\sqrt{u}-\sqrt{v})}\right)^{2 g+2} \\
& \times\left(\frac{\sinh (2(\sqrt{u}+\sqrt{v}))}{2(\sqrt{u}+\sqrt{v})} \frac{\sinh (2(\sqrt{u}-\sqrt{v}))}{2(\sqrt{u}-\sqrt{v})} \frac{\sinh (2 \sqrt{u})}{2 \sqrt{u}} \frac{\sinh (2 \sqrt{v})}{2 \sqrt{v}}\right)^{2} \tag{13}
\end{align*}
$$

The expressions (12) and (13) are symmetric in u and v. Hence, we have the following.

Corollary 4.1. For $g \geq 2$, all the Pontrjagin numbers vanish as well as

$$
\hat{A}_{2 g-3}\left(\mathcal{M}_{g, g-1}\right)=0
$$

the Chern classes

$$
c_{4 g-6}\left(\mathcal{M}_{g, g-1}\right)=c_{4 g-7}\left(\mathcal{M}_{g, g-1}\right)=0
$$

and in particular,

$$
\chi\left(\mathcal{M}_{g, g-1}\right)=0 .
$$

Furthermore,

$$
\begin{aligned}
& \chi\left(\mathcal{M}_{g}, \mathcal{O}\left(T^{1,0} \mathcal{M}_{g}\right)\right)= \begin{cases}-1 & \text { if } g=2, \\
-6 & \text { if } g=3, \\
-2 g+1 & \text { if } g \geq 4,\end{cases} \\
& \chi\left(\mathcal{M}_{g}, \mathcal{O}\left(T^{0,1} \mathcal{M}_{g}\right)\right)= \begin{cases}-1 & \text { if } g \neq 3, \\
2 & \text { if } g=3\end{cases}
\end{aligned}
$$

Proof. The Chern class vanishings are proved by expanding the expression (11) and using the intersection numbers in Theorem 4.1.

The holomorphic Euler characteristics follow from the K-theoretical identity

$$
T^{1,0} \mathcal{M}_{g, g-1}=(2 g+2) V \otimes L^{1 / 2}-2 S^{2} V \otimes L-S^{2} V-1
$$

and the formulae of Proposition 4.1. Let (k) denote the operation of tensoring with L^{k}. Since $\mathcal{M}_{g, g-1}$ is the zero set of a non-degenerate section of the bundle $\sigma^{*}=S^{2} Q=S^{2} V(1)$, we have a Koszul complex

$$
0 \rightarrow \mathcal{O}_{\mathcal{F}}\left(\wedge^{3} \sigma(k)\right) \rightarrow \mathcal{O}_{\mathcal{F}}\left(\wedge^{2} \sigma(k)\right) \rightarrow \mathcal{O}_{\mathcal{F}}(\sigma(k)) \rightarrow \mathcal{O}_{\mathcal{F}}(k) \rightarrow \mathcal{O}_{\mathcal{M}}(k) \rightarrow 0
$$

which is equivalent to

$$
0 \rightarrow \mathcal{O}_{\mathcal{F}}(k-3) \rightarrow \mathcal{O}_{\mathcal{F}}\left(S^{2} V(k-2)\right) \rightarrow \mathcal{O}_{\mathcal{F}}\left(S^{2} V(k-1)\right) \rightarrow \mathcal{O}_{\mathcal{F}}(k) \rightarrow \mathcal{O}_{\mathcal{M}}(k) \rightarrow 0
$$

Tensoring the complex by V and $S^{2} V$, we see that

$$
\begin{aligned}
\chi\left(\mathcal{M}_{g, g-1}, \mathcal{O}(V(k))\right)= & f_{1 / 2}(k)-f_{3 / 2}(k-1)-f_{1 / 2}(k-1)+f_{3 / 2}(k-2) \\
& +f_{1 / 2}(k-2)-f_{1 / 2}(k-3)
\end{aligned}
$$

and

$$
\begin{aligned}
\chi\left(\mathcal{M}_{g, g-1}, \mathcal{O}\left(S^{2} V(k)\right)\right)= & f_{1}(k)-f_{2}(k-1)-f_{1}(k-1)-f_{0}(k-1)+f_{2}(k-2) \\
& +f_{1}(k-2)+f_{0}(k-2)-f_{1}(k-3)
\end{aligned}
$$

respectively.
Remark. These vanishings constitute a generalisation of the Newstead conjectures to the spaces $\mathcal{M}_{g, g-1}$. In fact, the vanishings for $\mathcal{M}_{g, 1}$ are due to the triviality of $T J\left(\Sigma_{g}\right)$ and the
vanishings for $\mathcal{M}_{g, 2}$ were first found by Newstead $[11$, Conjectures (a) and (b)] and proved by Kirwan [9] and Gieseker [5].

Conjecture 4.1. The top $(g+1-n)$ Chern classes of $\mathcal{M}_{g, n}$ vanish, i.e.

$$
c_{(2 n-2)(g+1-n)+j}\left(\mathcal{M}_{g, n}\right)=0 \quad \text { for } j \geq 1
$$

References

[1] F.E. Burstall, J.R. Rawnsley, Twistor Theory for Riemannian Symmetric Spaces, Lecturer Notes in Mathematics, Vol. 1424, Springer, Berlin, 1990.
[2] S.K. Donaldson, Gluing techniques in the cohomology of moduli spaces, in: L.R. Goldberg, A.V. Philips (Eds.), Topological Methods in Modern Mathematics, Publish or Perish, Houston, 1993, pp. 137-170.
[3] G. Faltings, A proof for the Verlinde formula, J. Algebraic Geom. 3 (1994) 347-374.
[4] W. Fulton, S. Lang, Riemann-Roch Algebra, Springer, Berlin, 1985.
[5] D. Gieseker, A degeneration of the moduli space of stable bundles, J. Differential Geom. 19 (1984) 173-206.
[6] R. Herrera, Some Verlinde formulae and twistor transform, Preprint, 1999.
[7] R. Herrera, S. Salamon, Intersection numbers on moduli spaces and symmetries of a Verlinde formula, Commun. Math. Phys. 188 (3) (1997) 521-534, dg-ga/9612016.
[8] L.C. Jeffrey, F.C. Kirwan, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. Math. 148 (1) (1998) 109-196, alg-geom/9608029.
[9] F.C. Kirwan, The cohomology rings of moduli spaces of bundles over Riemann surfaces, J. Am. Math. Soc. 5 (1992) 853-906.
[10] C.R. LeBrun, S.M. Salamon, Strong rigidity of positive quaternion-Kähler manifolds, Invent. Math. 118 (1994) 109-132.
[11] P.E. Newstead, Characteristic classes of stable bundles over an algebraic curve, Trans. Am. Math. Soc. 169 (1972) 337-345.
[12] S. Ramanan, Orthogonal and Spin Bundles over Hyperelliptic Curves, Geometry and Analysis (papers dedicated to the memory of V.K. Patodi), Springer, Berlin, 1981.
[13] S.M. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982) 143-171.
[14] S. Salamon, Harmonic and holomorphic maps, in: Seminar Luigi Bianchi II, Lecturer Notes in Mathematics, Vol. 1164, Springer, Berlin, 1990, pp. 161-224.
[15] S.M. Salamon, The twistor transform of a Verlinde formula, Riv. Mat. Univ. Parma 3 (1994) 143-157, dg-ga/9506003.
[16] A. Szenes, Hilbert polynomials of moduli spaces of rank 2 vector bundles I, Topology 32 (1993) 587-597.
[17] M. Thaddeus, Conformal field theory and the moduli space of stable bundles, J. Differential Geom. 35 (1992) 131-149.
[18] J.A. Wolf, Complex homogeneous contact structures and quaternionic symmetric spaces, J. Math. Mech. 14 (1965) 1033-1047.
[19] D. Zagier, On the cohomology of moduli spaces of rank two vector bundles over curves, in: R. Dijkgraaf, C. Faber, G. van der Geer (Eds.), The Moduli Spaces of Curves, Progress in Mathematics, Vol. 129, Birkhäuser, Basel, 1995, pp. 533-563.

[^0]: E-mail address: herrera@math.yale.edu (R. Herrera).
 0393-0440/00/\$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
 PII: S0393-0440(00)00021-8

